首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the influence of inorganic nitrogen sources (NO3 ? or NH4 +) and potassium deficiency on expression and activity of plasma membrane (PM) H+-ATPase in sorghum roots. After 15 d of cultivation at 0.2 mM K+, the plants were transferred to solutions lacking K+ for 2 d. Then, K+ depletion assays were performed in the presence or absence of vanadate. Further, PMs from K+-starved roots were extracted and used for the kinetic characterization of ATP hydrolytic activity and the immunodetection of PM H+-ATPase. Two major genes coding PM H+-ATPase (SBA1 and SBA2) were analyzed by real-time PCR. PM H+-ATPase exhibited a higher Vmax and Km in NH4 +-fed roots compared with NO3 ? -fed roots. The optimum pH of the enzyme was slightly lower in NO3 ? -fed roots than in NH4 +-fed roots. The vanadate sensitivity was similar. The expressions of SBA1 and SBA2 increased in roots grown under NH4 +. Concomitantly, an increased content of the enzyme in PM was observed. The initial rate of K+ uptake did not differ between plants grown with NO3 ? or NH4 +, but it was significantly reduced by vanadate in NH4 +-grown plants.  相似文献   

2.
Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage were investigated in three characids (cardinal, hemigrammus, moenkhausia tetras), using radiotracer flux techniques to study the unidirectional influx (J in), efflux (J out), and net flux rates (J net) of Na+ and Cl?, and the net excretion rate of ammonia (J Amm). The fish were collected directly from the Rio Negro, and studied in their native “blackwater” which is acidic (pH 4.5), ion-poor (Na+, Cl? ~20 µM), and rich in dissolved organic matter (DOM 11.5 mg C l?1). J in Na , J in Cl , and J Amm were higher than in previous reports on tetras obtained from the North America aquarium trade and/or studied in low DOM water. In all three species, J in Na was unaffected by amiloride (10?4 M, NHE and Na+ channel blocker), but both J in Na and J in Cl were virtually eliminated (85–99 % blockade) by AgNO3 (10?7 M). A time course study on cardinal tetras demonstrated that J in Na blockade by AgNO3 was very rapid (<5 min), suggesting inhibition of branchial carbonic anhydrase (CA), and exposure to the CA-blocker acetazolamide (10?4 M) caused a 50 % reduction in J in Na .. Additionally, J in Na was unaffected by phenamil (10?5 M, Na+ channel blocker), bumetanide (10?4 M, NKCC blocker), hydrochlorothiazide (5 × 10?3 M, NCC blocker), and exposure to an acute 3 unit increase in water pH. None of these treatments, including partial or complete elimination of J in Na (by acetazolamide and AgNO3 respectively), had any inhibitory effect on J Amm. Therefore, Na+ uptake in Rio Negro tetras depends on an internal supply of H+ from CA, but does not fit any of the currently accepted H+-dependent models (NHE, Na+ channel/V-type H+-ATPase), or co-transport schemes (NCC, NKCC), and ammonia excretion does not fit the current “Na+/NH4 + exchange metabolon” paradigm. Na+, K+-ATPase and V-type H+-ATPase activities were present at similar levels in gill homogenates, Acute exposure to high environmental ammonia (NH4Cl, 10?3 M) significantly increased J in Na , and NH4 + was equally or more effective than K+ in activating branchial Na+,(K+) ATPase activity in vitro. We propose that ammonia excretion does not depend on Na+ uptake, but that Na+ uptake (by an as yet unknown H+-dependent apical mechanism) depends on ammonia excretion, driven by active NH4 + entry via basolateral Na+,(K+)-ATPase.  相似文献   

3.
4.
Proton net efflux of wheat (Triticum aestivum L.) roots growing in sand culture or hydroponics was determined by measuring the pH values of the solution surrounding the roots by pH microelectrodes, by base titration and by color changes of a pH indicator in solid nutrient media. The proton net efflux was dependent on light, aeration, and source of nitrogen (NH 4 + , NO 3 ? ). Ammonium ions caused the highest proton efflux, whereas nitrate ions decreased the proton efflux. Iron deficiency had no significant effect on proton efflux. Replacement of ammonium by nitrate inhibited proton efflux, whereas the reverse enhanced proton extrusion. A lag period between changes in plant environment and proton efflux was observed. The proton net efflux occurred at the basal portion of the roots but not in the root tips or at the elongation zone. Under optimal conditions, proton efflux capacity reached a maximum value of 5.7 μmole H+ g?1 fresh weight h?1 with an average (between different measurements) of 3.4 μmole H+ g?1 fresh wth?1 whereas the pH value decreased to 3.2–3.7 and reached a minimal value of 2.9. Inhibition of ATPase activity by orthovanadate inhibited proton efflux. The results indicate that proton efflux in wheat roots is ammonium ion and light dependent and probably governed by ATPase activity.  相似文献   

5.
Childhood acute lymphoblastic leukaemia (ALL) originates from mutations in haematopoietic progenitor cells (HPCs). For high-risk patients, treated with intensified post-remission chemotherapy, haematopoietic stem cell (HSC) transplantation is considered. Autologous HSC transplantation needs improvisation till date. Previous studies established enhanced disease-associated expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of these patients at diagnosis, followed by its decrease with clinical remission and reappearance with relapse. Based on this differential expression of Neu5,9Ac2-GPs, identification of a normal HPC population was targeted from patients at diagnosis. This study identifies two distinct haematopoietic progenitor populations from bone marrow of diagnostic ALL patients, exploring the differential expression of Neu5,9Ac2-GPs with stem cell (CD34, CD90, CD117, CD133), haematopoietic (CD45), lineage-commitment (CD38) antigens and cytosolic aldehyde dehydrogenase (ALDH). Normal haematopoietic progenitor cells (ALDH+SSCloCD45hiNeu5,9Ac2 -GPsloCD34+CD38?CD90+CD117+CD133+) differentiated into morphologically different, lineage-specific colonies, being crucial for autologous HSC transplantation while leukemic stem cells (ALDH+SSCloCD45loNeu5,9Ac2 -GPshiCD34+CD38+CD90?CD117?CD133?) lacking this ability can be potential targets for minimal residual disease detection and drug-targeted immunotherapy.  相似文献   

6.
The effects of mineral nutrient were examined on in vitro growth of Gerbera hybrida (G. jamesonii?×?G. viridifolia), specifically Gerbera hybrida cv. Pasadena. Four types of experiments were conducted to quantify the effects of mineral nutrients on four in vitro growth responses (quality, shoot number, leaf number, and shoot height) of gerbera and included groups of mineral nutrients (macros/mesos, micros, and Fe), individual salts (CuSO4·5H2O, MnSO4·4H2O, ZnSO4·7H2O, and Fe/EDTA), and the specific ions NO3 ?, NH4 +, and K+. Experiments included mixture-amount designs that are essential for separating the effects of proportion and concentration. Highly significant effects were observed in all experiments, but the mineral nutrients with the largest effects varied among the four growth responses. For example, leaf number was strongly affected by the macronutrient group in one experiment and by NH4 + and K+, which were in the macronutrient group, in the NO3 ?/NH4 +/K+ ion-specific experiment, whereas quality was strongly affected by the micronutrients ZnSO4 and Fe/EDTA. Because mineral nutrient effects varied significantly with the response measured, defining an appropriate formulation requires a clear definition of “optimal” growth.  相似文献   

7.
Clostridium botulinum produce the antigenically distinct 150 kD neurotoxin serotypes (e.g., A, B, C1, and E) and simultaneously proteins, A Hn+, B Hn+, C Hn+, and E Hn?, that have high, low, and no hemagglutinating activity. A Hn+ and B Hn+ are serologically cross-reactive. A Hn+, B Hn+, and C Hn+ found as large aggregates (900–220 kD) can be dissociated on SDS-PAGE into multiple subunits, the smallest for A Hn+, B Hn+ is 17 kD and 27 kD for C Hn+. The 116 kD E Hn? does not aggregate. We determined the sequences of 10–33 amino terminal residues of the 17, 21.5, 35, and 57 kD subunits of A Hn+ and B Hn+. Each of these subunits have unique sequences, indicating that the larger units studied are not homomers or heteromers of smaller units. The subunits of A Hn+ and B Hn+ of comparable size have striking sequence identity (e.g., 21.5 kD subunits from the two are identical and 57 kD subunits have 80% identity).In vitro proteolysis of 116 kD E Hn? with different proteases did not impart hemagglutinating activity to the fragments. The 116 kD E Hn? and one of its proteolytic fragments (87 kD) were partially sequenced. Sixty-two base pairs downstream from the termination codon of the cloned 33 kD subunit of C Hn+, there is an initiation codon followed by an open reading frame for at least 34 amino acid residues (Tsuzukiet al., 1990). The derived amino acid sequence of this open reading frame, we found, has 73–84% sequence identity with those of the 17 kD subunits of A Hn+ and B Hn+ and significant identity with the N-terminal of E Hn?. These highly conserved sequences show existence of genetic linkage among the Hn+ and Hn? proteins.  相似文献   

8.
The present study demonstrates that the mitochondrial respiratory chain includes not three but four energy coupling sites, the fourth site being localized at the NADPH→NAD+ step.
  1. The NADPH→NAD+-directed transhydrogenase reaction in sonicated beef heart submitochondrial particles energizes the particle membrane as judged by two membrane potential probes, i.e. uptake of a penetrating anion, phenyldicarbaundecaborane (PCB?), and enhancement of anilinonaphthalene sulfonate (ANS?) fluorescence.
  2. The reverse reaction (NADH→NADP+) is accompanied by the oppositely directed anion movement, i.e. PCB? efflux.
  3. Being insensitive to rotenone, antimycin, cyanide, and oligomycin, both the influx and efflux of PCB? coupled with transhydrogenase reaction can be prevented or reversed by uncouplers.
  4. Equalization of concentrations of the transhydrogenase substrates and products also prevents (or reverses) the PCB? influx coupled with oxidation of NADPH by NAD+, as well as the PCB? efflux coupled with reduction of NADP+ by NADH.
  5. The transhydrogenase-linked PCB? uptake depends linearly on the energy yield of the oxidation reaction calculated according to formula $$\Delta G = RTln\frac{{[NADPH] x [NAD^ + ]}}{{[NADP^ + ] x [NADH]^ \cdot }}$$ No threshold value of Δ was found. Measurable PCB? transport was still observed at Δ≤0.5 kcal/mole NADPH oxidized.
  6. Partial uncoupling of transhydrogenase reaction and PCB? transport, induced by low concentrations ofp-trifluoromethoxycarbonylcyanide phenylhydrazone (FCCP), dinitrophenol, or by removing coupling factor F1, results in the decrease of the slope of the straight line showing the PCB? uptake as a function of Δ. Oligomycin improves the coupling in F1-deprived particles, the slope being increased. Rutamycin, dicyclohexylcarbodiimide (DCCD) and reconstitution of particles with F1, also increase the coupling.
  7. In phosphorylating particles oxidizing succinate by O2, both the energy-dependent NADH→NADP+ hydrogen transfer and PCB? influx possess equal sensitivity to FCCP, which is lower than the sensitivity of oxidative phosphorylation. Similarly, the decrease in the succinate oxidation rate induced by malonate arrests first phosphorylation and then under higher malonate concentration, PCB? influx. The rate of NADPH→NAD+ transhydrogenase reaction was found to be lower than the threshold value of rate of succinate oxidation, still coupled with phosphorylation. Respectively, the values of PCB? uptake under transhydrogenase reaction are lower than those inherent in phosphorylating oxidation of succinate.
The conclusion is made that the NADPH→NAD+-directed transhydrogenase reaction generates the membrane potential of the same polarity as respiration and ATP hydrolysis but of a lower magnitude (“plus” inside particles; the forward hydrogen transfer). The NADH→NADP+-directed transhydrogenase reaction forms the membrane potential of the opposite polarity (“minus” inside particles; the reverse hydrogen transfer). Under conditions used, the transhydrogenase-produced membrane potential proves to be too low to support ATP synthesis (and, most probably, the synthesis of any other high-energy compound) maintaining, nevertheless, some electrophoretic ion fluxes. A conclusion is made that transhydrogenase forms a membrane potential with no high-energy intermediates involved.  相似文献   

9.
Bacterial plasmids have genes that confer highly specific resistances to As, Bi, Cd, Cu, Cr, Hg, Pb, Te, Zn, and other toxic heavy metals. For each toxic cation or anion, generally a different resistance system exists, and these systems may be “linked” together on multiple resistance plasmids. For Cd2+, AsO2 ?, AsO4 3?, Hg2+, and organomercurials, DNA sequence analysis has supplemented direct physiological and biochemical experiments to produce sophisticated understanding. ThecadA ATPase ofS.aureus plasmids is a 727 amino acid membrane ATPase that pumps Cd2+ from the cells as rapidly as it is accumulated. This polypeptide is related by sequence to other cation translocating ATPases, including the membrane K+ ATPases ofEscherichia coli andStreptococcus faecalis, the H+ ATPases of yeast andNeurospora, the Na+/K+ ATPases of vertebrate animals, and the Ca2+ ATPases of rabbit muscle. The conserved residues include the aspartyl residue that is phosphorylated, the lysine involved in ATP binding, and the proline within a membrane translocating region. The arsenate and arsenite translocating ATPase consists of 3 polypeptides (from DNA sequence analysis), including a recognizable ATP binding protein (arsA), an integral membrane protein (arsB gene), and a substrate specificity subunit (arsC gene). Inorganic mercury and organomercurial degradation is carried out by a series of about 6 polypeptides, including 2 soluble intracellular enzymes (organomercurial lyase and mercuric reductase). The latter is related by sequence and function to glutathione reductase and lipoamide dehydrogenase of prokaryotes and eukaryotes. These enzymes are dimeric, FAD-containing, NAD(P)H-dependent oxidoreductases. Other recognizable polypeptides in themer system include a DNA-binding regulatory protein from themerR gene and a Hg2+ transport system consisting of a periplasmic Hg2+-binding protein (merP gene) and a membrane protein (merT gene) in gram negative systems.  相似文献   

10.
11.
This study was conducted to investigate the immune adherence function of erythrocytes and erythrocyte induced by dietary nickel chloride (NiCl2) in broilers fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Blood samples were collected from five broilers in each group at 14, 28, and 42 days of age. Changes of erythrocyte parameters showed that total erythrocyte count (TEC), hemoglobin (Hb) contents, and packed cell volume (PCV) were significantly lower (p?p?p?p?+/K+-ATPase) and calcium adenosine triphosphatase (Ca2+-ATPase) activities were significantly decreased (p?p?2-treated groups. The results of erythrocyte immune adherence function indicated that erythrocyte C3b receptor rosette rate (E-C3bRR) was significantly decreased (p?p?p?p?2 in excess of 300 mg/kg caused anemia and impaired the erythrocytic integrity, erythrocytic ability to transport oxygen, and erythrocyte immune adherence function in broilers. Impairment of the erythrocytes and erythrocyte immune adherence function was one of main effect mechanisms of NiCl2 on the blood function.  相似文献   

12.
13.
A novel putative aldehyde dehydrogenase (ALDH) gene aldh1413 from Flammeovirga pacifica isolated from deep sea sediment was cloned, expressed, and characterized. The molecular weight of the ALDH1413 (479 amino acids) was estimated by SDS-PAGE to be 53 kDa. The optimum temperature and pH for ALDH1413 were 35°C and 9.0, respectively. In the presence of either NAD+ or NADP+, the enzyme could oxidize a number of aliphatic aldehydes, particularly C3-and C5-aliphatic aldehydes and aromatic aldehydes such as benzaldehyde, which indicates that the enzyme belongs to broad-specific (ALDH) superfamily. Steady-state kinetic study revealed that ALDH1413 had a K M value of 0.545 mM and a k cat value of 7.48 s?1 when propionaldehyde was used as the substrate. The Na+ could enhance ALDH1413 activity, which indicated it might be adapt to its habitat, marine environment.  相似文献   

14.
15.
Interaction of DNA methylation and sequence variants that are methylation quantitative trait loci (mQTLs) may influence susceptibility to diseases such as alcohol dependence (AD). We used genome-wide genotype data from 268 African Americans (AAs: 129 AD cases and 139 controls) and 143 European Americans (EAs: 129 AD cases and 14 controls) to identify mQTLs that were associated with promoter CpGs in 82 AD risk genes. 282 significant mQTL–CpG pairs (9.9 × 10?100 ≤ P nominal ≤ 7.7 × 10?8) in AAs and 313 significant mQTL–CpG pairs (2.7 × 10?53 ≤ P nominal ≤ 9.9 × 10?8) in EAs were identified [i.e., mQTL–CpG associations survived multiple-testing correction, q values (false discovery rate) ≤ 0.05]. The most significant mQTL was rs1800759, which was strongly associated with CpG cg12011299 in both AAs (P nominal = 9.9 × 10?100; q = 6.7 × 10?91) and EAs (P nominal = 2.7 × 10?53; q = 1.4 × 10?44). Rs1800759 (previously known to be associated to AD) and CpG cg12011299 (distance: 37 bp) are both located in alcohol dehydrogenase (ADH) 4 gene (ADH4) promoter region. In general, the strength of association between mQTLs and CpGs was inversely correlated with the distance between them. Association was also influenced by race and AD. Additionally, 48.3 % of the mQTLs identified in AAs and 65.6 % of the mQTLs identified in EAs were predicted to be expression QTLs. Three mQTLs (rs2173201, rs4147542, and rs4147541 in ADH1B-AHD1C gene cluster region) found in AAs were previously identified by our genome-wide association studies as being significantly associated with AD in AAs. Thus, DNA methylation, which can be influenced by sequence variants and is implicated in gene expression regulation, appears to at least partially underlie the association of genetic variation with AD.  相似文献   

16.

Main conclusion

Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na + induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na+ significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na+ also induced a significant K+ efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv′/Fm′ were linked to K+ homeostasis in the mesophyll tissue. Increased apoplastic Na+ concentrations induced vanadate-sensitive net H+ efflux, presumably mediated by the plasma membrane H+-ATPase. It is concluded that the observed pump’s activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.  相似文献   

17.
18.
5-Enopyruvylshikimate-3-phosphate synthase (EPSP synthase) is an important enzyme in the shikimate pathway mediating the biosynthesis of aromatic compounds in plants and microorganisms. A novel class II EPSP synthase AroA S. fredii from Sinorhizobium fredii NGR234 was overexpressed in Escherichia coli BL21. It was purified to homogeneity and its catalytic properties were studied. The enzyme exhibited optimum catalytic activity at pH 8.0 and 50 °C. It was stable below 40 °C, and over a broad range of pH 5.0–9.0. The EPSP synthase was increasingly activated by 100 mM of the chlorides of NH4 +, K+, Na+ and Li+. Kinetic analysis of AroA S. fredii suggested that the enzyme exhibited a high glyphosate tolerance and high level of affinity for phosphoenolpyruvate, which indicates the enzyme with a high potential for structural and functional studies and its potential usage for the generation of transgenic crops resistant to the herbicide.  相似文献   

19.
The average biomass ofHalimeda per m2 of solid substratum increased progressively on a series of reefs situated at increasing distances from the shore in the central Great Barrier Reef. There was none on a reef close inshore, increasing to nearly 500 g m?2 total biomass (?90% calcium carbonate) on an oceanic atoll system in the Coral Sea. The biomass measured contained 13 species ofHalimeda but was dominated by only two species,H. copiosa andH. opuntia, except on the atoll whereH. minima was dominant. Three sand-dwelling species were also present but did not occur anywhere in substantial quantities. Growth rates of the dominant species were measured bv tagging individual branch tips. A mean value of 0.16 segments d?1 was recorded but 41% of the branch tips did not grow any new segments whilst only 1% grew more than one per day. The number of branch tips per unit biomass was very constant and has been used in conjunction with growth rates and biomass to calculate productivity rates, and thence sedimentation, in the lagoon of one of the reefs. Biomass doubling time of 15 d and production of 6.9 g dry wt m?2 d?1 are considerably higher than previously reported values forHalimeda vegetation and there was little seasonal change detected over a whole year. Those values indicate annual accretion of 184.9 g m?2 year?1 ofHalimeda segment debris over the entire lagoon floor (5.9 km2) of Davies Reef, equivalent to 0.13 mm year?1 due toHalimeda alone, or 1 m every 1,892 years when other contributions to that sediment are taken into account.  相似文献   

20.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号