首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
John Jaenike 《Oikos》2009,118(3):353-362
Many insect species are infected with maternally transmitted endosymbionts, the most widely documented being Wolbachia . The rate of spread and equilibrium of prevalence of these infections depend on two parameters – maternal transmission fidelity and relative fitness of infected cytoplasmic lineages. Both transmission fidelity and the phenotypic effect of endosymbionts often increase with endosymbiont density within hosts. Thus, the dynamics of infection prevalence in host populations depends on processes affecting within-host density of endosymbionts. In theory, the equilibrium prevalence of infection by male-killing endosymbionts is much more sensitive to changes in transmission fidelity and relative fitness than is that of endosymbionts that cause cytoplasmic incompatibility. In natural populations, male-killers exhibit much greater temporal and spatial variation in the prevalence of infection than do endosymbionts that cause cytoplasmic incompatibility. Thus, the population dynamics of endosymbiont infections, especially those that cause male-killing, is likely to be governed by environmental and genetic variables that affect within-host density of these infections.  相似文献   

2.
Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans.  相似文献   

3.
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.Subject terms: Evolutionary genetics, Evolutionary ecology, Parasitology  相似文献   

4.
The past years have revealed that inherited bacterial endosymbionts are important sources of evolutionary novelty for their eukaryotic hosts. In this review we discuss a fundamental biological process of eukaryotes influenced by bacterial endosymbionts: the mechanisms of sex determination. Because they are maternally inherited, several endosymbionts of arthropods, known as reproductive parasites, have developed strategies to convert non-transmitting male hosts into transmitting females through feminization of genetic males and parthenogenesis induction. Recent investigations have also highlighted that endosymbionts can impact upon host sex determination more subtly through genetic conflicts, resulting in selection of host nuclear genes resisting endosymbiont effects. Paradoxically, it is because of their selfish nature that reproductive parasites are such powerful agents of evolutionary change in their host sex-determination mechanisms. They might therefore represent excellent models for studying transitions between sex-determining systems and, more generally, the evolution of sex-determination mechanisms in eukaryotes.  相似文献   

5.
Maternally transmitted endosymbionts of the genus Spiroplasma infecting several species of Drosophila are known to cause selective death of male offspring (male killing). The male-killing trait is considered to be advantageous for maternally transmitted endosymbionts. However, a non-male-killing spiroplasma is present in Japanese populations of Drosophila hydei at high frequencies (23-66%). This spiroplasma is phylogenetically closely related to the male-killing spiroplasma infecting other Drosophila species. It is unknown why this spiroplasma is maintained in its host populations despite its inability to cause male killing. We examined the susceptibilities of the spiroplasma in D. hydei to four different temperatures (28, 25, 18, and 15 degrees C). Diagnostic PCR revealed that vertical transmission of the spiroplasma was nearly perfect at 28 and 25 degrees C, partially suppressed at 18 degrees C, and completely blocked at 15 degrees C. Furthermore, quantitative PCR demonstrated that offspring treated at 18 degrees C exhibited dramatically lower densities of spiroplasma (i.e., approximately one-tenth) compared to offspring treated at 28 and 25 degrees C. Considering the low temperatures during winter in Japan, some unknown advantageous effects of the spiroplasma that compensate for the failure of vertical transmission are suggested to act in natural populations of D. hydei.  相似文献   

6.
Wayne G. Landis 《Genetics》1987,115(1):197-205
The factors maintaining the cytoplasmically inherited killer trait in populations of Paramecium tetraurelia and Paramecium biaurelia were examined using, in part, computer simulation. Frequency of the K and k alleles, infection and loss of the endosymbionts, recombination during conjugation and autogamy, cytoplasmic exchange and natural selection were incorporated in a model. Infection during cytoplasmic exchange at conjugation and natural selection were factors that would increase the proportion of killers in a population. Conversely, k alleles reduced the proportion of killers in a population, acting through conjugation and autogamy. Field studies indicate that the odd mating type is prevalent in P. tetraurelia isolated from nature. Conjugation and therefore transmission by cytoplasmic transfer would be rare. Competition studies indicate a strong selective disadvantage for sensitives at concentrations found in nature. Natural selection must therefore be the factor maintaining the killer trait in P. tetraurelia.  相似文献   

7.
Bacterial endosymbionts belonging to the family Rickettsiaceae were recently identified in the unicellular green alga Carteria cerasiformis, providing the first molecular evidence of rickettsial endosymbionts within photosynthetic eukaryotes. However, previous morphological studies using transmission electron microscopy (TEM) with conventional chemical fixation did not demonstrate whether the endosymbionts of C. cerasiformis have the diagnostic characteristics of the family Rickettsiaceae. In this study, we observed the rickettsial endosymbionts “MIDORIKO” within C. cerasiformis cells by TEM with high-pressure freezing and freeze-substitution fixation. The rickettsial endosymbionts resided directly in the C. cerasiformis cytoplasm without engulfing or encompassing membranes or vacuoles. The endosymbionts had a Gram-negative cell envelope composed of outer and inner bilayer membranes. The thicknesses of the outer and inner leaflets of the bacterial cell wall were almost identical. These morphological characteristics are consistent with those of the genus Rickettsia, but the cell wall structure differed from that of the genus Orientia within the family Rickettsiaceae.  相似文献   

8.
Intracellular endosymbiotic bacteria inherent to ants of the genus Camponotus were characterized. The bacteria were localized in bacteriocytes, which are specialized cells of both workers and queen ants; these cells are intercalated between epithelial cells of the midgut. The bacteriocytes show a different morphology from the normal epithelial cells and carry a large number of the rod-shaped Gram-negative bacteria free in the cytoplasm. The bacteria were never observed in the neighbouring epithelial cells, but they were found intracellularly in oocytes, strongly indicating a maternal transmission of the bacteria. The 16S DNA encoding rrs loci of the endosymbionts of four species of the genus Camponotus derived either from Germany (C. herculeanus and C. ligniperdus), North America (C. floridanus) or South America (C. rufipes) were cloned after polymerase chain reaction (PCR) amplification using oligonucleotides complementary to all so far known eubacterial rrs sequences. The DNA sequences of the rrs loci of the four endosymbionts were determined, and, using various genus- and species-specific oligonucleotides derived from variable regions in the rrs sequences, the identity of the bacteria present in the bacteriocytes and the ovarian cells was confirmed by PCR and in situ hybridization techniques. Comparison of the 16S DNA sequences with the available database showed the endosymbiotic bacteria to be members of the γ-subclass of Proteobacteria. They formed a distinct taxonomic group, a sister taxon of the taxons defined by the tsetse fly and aphid endosymbionts. Within the γ-subclass, the cluster of the ant, tsetse fly and aphid endosymbionts are placed adjacent to the family of Enterobacteriaceae. The evolutionary tree of the ant endosymbionts reflects the systematic classification and geographical distribution of their host insects, indicating an early co-evolution of the symbiotic partners and a vertical transmission of the bacteria.  相似文献   

9.
1. Insects are commonly infected with bacterial endosymbionts. In addition to the costs and benefits associated with harbouring these symbionts, their rates of vertical and horizontal transmission are important determinants of symbiont prevalence. 2. Aphids are cyclical parthenogens and show virtually perfect maternal transmission of endosymbionts during asexual reproduction. Less clear is the role of the annual sexual generation, during which overwintering eggs are produced. Data from pea aphids (Acyrthosiphon pisum Harris) suggest that maternal transmission failures and horizontal transmission via males may occur under sexual reproduction at least occasionally. No such data exist for other aphid species. 3. In the present study, the rates of maternal and paternal transmission of facultative endosymbionts during sexual reproduction in the black bean aphid, Aphis fabae (Scopoli) were examined. Crosses were performed between clones infected with Hamiltonella defensa, clones infected with Regiella insecticola and clones without facultative endosymbionts, and eggs were overwintered under three different conditions. 4. Only one of 205 offspring from crosses testing for maternal transmission failed to inherit the symbiont present in the maternal clone, and in crosses testing for horizontal transmission, only one of 412 offspring acquired a facultative symbiont from the father. 5. These results show that in A. fabae, maternal transmission of H. defensa and R. insecticola is extremely reliable also during sexual reproduction, indicating that maternal transmission failures are unlikely to exert a significant influence on frequencies of infection in the field. Paternal transmission of endosymbionts was exceedingly rare, suggesting that this route of horizontal transmission may be less important than hitherto assumed.  相似文献   

10.
Fluorescent in situ hybridization with a 16S rRNA probe specific for Verrucomicrobia was used to (i) confirm the division-level identity of and (ii) study the behavior of the obligate intracellular verrucomicrobium "Candidatus Xiphinematobacter" in its nematode hosts. Endosymbionts in the egg move to the pole where the gut primordium arises; hence, they populate the intestinal epithelia of juvenile worms. During the host's molt to adult female, the endosymbionts concentrate around the developing ovaries to occupy the ovarian wall. Some bacteria are enclosed in the ripening oocytes for vertical transmission. Verrucomicrobia in males stay outside the testes because the tiny spermatozoids are not suitable for transmission of cytoplasmic bacteria.  相似文献   

11.
A major problem in evolutionary theory is to explain the widespread occurrence of sexual recombination. This is particularly difficult in anisogamous species where the familiar ‘two-fold cost of sex’ is encountered. Another cost has recently been identified: that fusion of gametes allows intracellular parasites or deleterious ‘selfish’ genomes to invade a population. These costs of anisogamy and the ability of cytoplasmic agents to invade a sexual population are quantified, allowing the costs and consequences of different modes of reproduction to be compared. It is found that the costs of selfish elements are likely to be very high and, in particular, that isogamous sexual reproduction (the putative ‘primitive’ form) is not cost-free, but incurs a fitness reduction of the order of 90%; thus a large selective disadvantage occurs in the initial evolution of sex which is ignored in standard analysis. Even once anisogamy has evolved, the low levels of ‘paternal leakage’ observed in many extant organisms may allow selfish cytoplasmic elements to spread, resulting in moderate to large decreases in host population fitness. However, much of the cost of selfish elements is avoided in sexual lifecycles with a large number of asexual cellular divisions between sexual reproduction: this greatly impedes the spread of selfish agents and reduces the fitness loss attributable to selfish elements.  相似文献   

12.
Symbiotic associations between species are ubiquitous, but we only poorly understand why some symbioses evolve to be mutualistic and others to be parasitic. One prominent hypothesis holds that vertical transmission of symbionts from host parents to their offspring selects for symbionts that are benign or beneficial, while horizontal transmission of symbionts among unrelated hosts selects for symbionts that are less beneficial or outright harmful. A long-standing challenge to this hypothesis, however, is the existence of selfish genetic elements (SGEs). SGEs are passed exclusively from parent to offspring and are able to spread and persist in populations despite reducing the fitness of their hosts. Here I show that SGEs are in fact consistent with the transmission mode hypothesis if one measures transmission from the perspective of host genes instead of host organisms. Both meiotic drive genes and cytoplasmic sex ratio distorters require horizontal transmission, in the form of outbred sex, to spread as parasites. Transmission from parent to offpsring does not constrain SGEs to evolve toward mutualism. The gene-centered perspective I present here is applicable to symbioses at all levels of selection and brings closer together our understandings of cooperation within and between species.  相似文献   

13.
烟粉虱复合种内共生菌多样性及其生物学意义   总被引:4,自引:0,他引:4  
烟粉虱复合种Bemisia tabaci(Gennadius) complex内共生菌的种类可分为5类:变形菌门(Proteobacteria)γ变形菌纲的初级内共生菌Candidatus Portiera aleyrodidarum和次级内共生菌,变形菌门α变形菌纲Wolbachia属细菌,衣原体门(Chlamydiae)衣原体纲细菌CandidatusFritschea bemisiae以及拟杆菌门(Bacteroidetes)类噬胞细菌(Cytophaga-like-organism, CLO)。系统发育分析表明,烟粉虱初级内共生菌分为2支,一些初级内共生菌和宿主系统发育并不严格一致; 次级内共生菌分为3支,一些次级内共生菌可能存在水平传播或多次侵入的现象。上述5类内共生菌在烟粉虱不同生物型/地理种群内的分布存在差异。B型烟粉虱可能具有独特的初级、次级内共生菌,并且不含有或很少含有Wolbachia属细菌、衣原体纲细菌Candidatus Fritschea bemisiae以及类噬胞细菌(CLO)。最后探讨了不同内共生菌对烟粉虱宿主的生物学意义及其研究方向。  相似文献   

14.
We investigate the dynamics of a cytoplasmic parasitic element with feminizing effect in a two-population model. We assume that the host species has a ZZ/ZW sex determination system. Our analysis reveals that the feminizer and the W chromosome can stably coexist by dominating different populations if the transmission rate differs significantly between the populations and migration is sufficiently weak. In the equilibrium of coexistence, genetic influx at any host autosomal locus is strongly enhanced in the population where infection is prevalent but not modified in the other population. We further explore conditions for the spread of autosomal suppressor genes that reduce transmission of feminizing elements to the cost of host viability, and compute their equilibrium frequencies. Our results confirm the hypothesis that selfish genetic elements convert infected host populations into genetic sinks, thereby restricting the spread of transmission suppressors.  相似文献   

15.
THE basis of cytoplasmic inheritance in the killer system of Paramecium aurelia has been located to endosymbionts* in the cytoplasm. Breeding experiments have shown the maintenance and replication of some of the endosymbionts in their cellular environment to depend on nuclear genes of the Paramecium host cell1. There are indications of a specific adaptation between the endosymbionts and certain strains or syngens (≡sibling species)2.  相似文献   

16.
Rickettsia-like maternally inherited bacteria have been shown to be involved in a variety of alterations of arthropod sexuality, such as female-biased sex ratios, parthenogenesis, and sterility of crosses either between infected males and uninfected females or between infected individuals (cytoplasmic incompatibility). We have characterized several of these microorganisms through partial sequences of the small (16S) and large (23S) subunit ribosomal DNA. All the symbionts identified, which include several cytoplasmic incompatibility microorganisms, several endosymbionts of terrestrial isopods, and symbionts of two thelytokous Trichogramma wasp species, belong to a monophyletic group of related symbionts, some of which have previously been detected in several insects exhibiting cytoplasmic incompatibility. Three molecular lineages can be identified on the basis of 16S as well as 23S sequences. Although they are only known as endocellular symbionts, Wolbachia spread by horizontal transfer across host lineages as evidenced by their diversification which occurred long after that of their hosts, and by the non-congruence of the phylogenetic relationships of symbionts and their hosts. Indeed, symbionts of two different lineages have been found in the same host species, whereas closely related endosymbionts are found in distinct insect orders. Isopod endosymbionts form a separate lineage, and they can determine feminization as well as cytoplasmic incompatibility. The ability to determine cytoplasmic incompatibility, found in all lineages, is probably ancestral to this group.  相似文献   

17.
Fluorescent in situ hybridization with a 16S rRNA probe specific for Verrucomicrobia was used to (i) confirm the division-level identity of and (ii) study the behavior of the obligate intracellular verrucomicrobium “Candidatus Xiphinematobacter” in its nematode hosts. Endosymbionts in the egg move to the pole where the gut primordium arises; hence, they populate the intestinal epithelia of juvenile worms. During the host's molt to adult female, the endosymbionts concentrate around the developing ovaries to occupy the ovarian wall. Some bacteria are enclosed in the ripening oocytes for vertical transmission. Verrucomicrobia in males stay outside the testes because the tiny spermatozoids are not suitable for transmission of cytoplasmic bacteria.  相似文献   

18.
Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1–2% in ‘natural’ niches. The second aspect we examine is the ability of HEGs to affect hosts'' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.  相似文献   

19.
Wolbachia are widespread intracellular symbionts of arthropods which are known to cause several reproductive manipulations in their hosts, the commonest of which being cytoplasmic incompatibility (CI), male killing (MK), and the induction of parthenogenesis (PI). Strains of endosymbionts inducing one of these effects can be referred to as 'Wolbachia-types'. Here, we try to ascertain whether two of these Wolbachia-types can stably coexist within one population. We investigate this question by means of two discrete-time mathematical models which describe the dynamics of an infection of a host population with either CI- and MK- or CI- and PI-Wolbachia. We derive analytical solutions for two special cases of each model showing that stable coexistence of the respective Wolbachia-types is not possible if no doubly infected individuals occur within the population and that stable coexistence is possible when doubly infected hosts do exist and transmission of the endosymbionts is perfect. Moreover, we show that a population infected with either CI- or MK-Wolbachia at equilibrium can resist invasion of the respective other Wolbachia-type as a single infection. In contrast, a population infected with CI-Wolbachia can be invaded by PI-Wolbachia as a single infection with the CI-Wolbachia going extinct. Computer simulations confirmed these findings for the general models. We discuss our results with respect to the prevalence of the Wolbachia-types considered here and the emergence of PI- from CI-Wolbachia.  相似文献   

20.
Male-killing (MK) and cytoplasmic incompatibility (CI) inducing bacteria are among the most common endosymbionts of arthropods. Previous theoretical research has demonstrated that these two types of endosymbionts cannot stably coexist within a single unstructured host population if no doubly infected host individuals occur. Here, we analyse a model of two host subpopulations connected by migration. We demonstrate that coexistence of MK- and CI-inducing endosymbionts is possible if migration rates are sufficiently low. In particular, our results suggest that for coexistence to be possible, migration rates into the subpopulation infected predominantly with MK-inducing endosymbionts must be considerably low, while migration rates from the MK- to the CI-infected subpopulation can be very high. We also analyse how the presence of MK- and CI-inducing endosymbionts affects host gene flow between the two subpopulations. Employing the concept of the 'effective migration rate', we demonstrate that compared with an uninfected subdivided population, gene flow is increased towards the MK-infected island, but decreased towards the CI-infected island. We discuss our results with respect to the butterfly Hypolimnas bolina, in which infection polymorphism of CI- and MK-inducing Wolbachia has been reported across South-Pacific island populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号