首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Methods for monitoring cell line identification and authentication include species-specific immunofluorescence, isoenzyme phenotyping, chromosome analysis, and DNA fingerprinting. Most previous studies of DNA fingerprinting of cell lines have used restriction fragment length polymorphism analysis. In this study, we examined the utility of an alternative and simpler method of cell line DNA fingerprinting—polymerase chain reaction (PCR) amplification of fragment length polymorphisms. Fourteen human cell lines previously found by other methods to be either related or disparate were subjected to DNA fingerprinting by PCR amplification of selected fragment length polymorphism loci. Cell identification patterns by this method were concordant with those obtained by isoenzyme phenotyping and restriction fragment length polymorphism-DNA fingerprinting, and were reproducible within and between assays on different DNA extracts of the same cell line. High precision was achieved with electrophoretic separation of amplified DNA products on high resolution agarose or polyacrylamide gels, and with fragment length polymorphism (FLP) loci-specific “allelic ladders” to identify individual FLP alleles. Determination of the composite fingerprint of a cell line at six appropriately chosen fragment length polymorphism loci should achieve a minimum discrimination power of 0.999. The ability of PCR-based fragment length polymorphism DNA fingerprinting to precisely and accurately identify the alleles of different human cell lines at multiple polymorphic fragment length polymorphism loci demonstrates the feasibility of developing a cell line DNA fingerprint reference database as a powerful additional tool for future cell line identification and authentication.  相似文献   

2.
Primers complementary to simple sequence repeats (SSRs) and with variable three-base anchors at their 5 end, were used in PCR analyses to compare pooled DNA samples from various Brassica napus and B. rapa cultivars. Amplification products were resolved on polyacrylamide gels and detected by silver-nitrate staining. The resulting banding patterns were highly repeatable between replicate PCRs. Two of the primers produced polymorphisms at 33 and 23 band positions, respectively, and could each discriminate 16 of the 20 cultivars studied. Combined use of both primers allowed all 20 cultivars to be distinguished. The UPGMA dendrogram, based on the cultivar banding profiles, demonstrated clustering on the basis of winter/spring growth habit, high/low glucosinolate content, and cultivar origin (i.e. the breeder involved). Intracultivar polymorphism was investigated using a minimum of ten individuals for each cultivar and was found to vary considerably between cultivars. It is concluded that anchored SSR-PCR analysis is a highly informative and reproducible method for fingerprinting oilseed rape populations, but that intra-cultivar variation should be investigated before using banding profiles from pooled samples for the identification of individuals.  相似文献   

3.
An easy and rapid protocol to extract DNA to be used as template for polymerase chain reaction (PCR) fingerprinting experiments from cultivable lactic acid bacteria (LAB) is proposed. Different procedures for rapid extraction of DNA by chelex (iminodiacetid acid) ionic resin were compared. Factors affecting the quality and reproducibility of PCR fingerprinting profiles were also investigated. Two out of three chelex-based protocols allowed to obtain DNA samples which, after PCR amplification, provided electrophoretic patterns comparable with those obtained by classical lysozyme and phenol-chloroform DNA extraction. A good level of reproducibility and consistency of the InstaGene procedure was verified. The procedure is fast, practical, and the DNA is of quality similar to that obtained by phenol-chloroform extraction. Although applied to a little number of LAB strains, chelex-based protocols are potentially applicable to a vast array of organisms and/or biological materials.  相似文献   

4.
目的评估AFLP-DNA指纹技术在新生隐球菌分类中应用情况。方法新生隐球菌基因组DNA用双酶酶切,双链接头连于其酶切末端,用与接头和酶切位点互补的引物扩增DNA片段,其产物在高分辨的变性聚丙酰胺凝胶上电泳分离,然后进行银染。结果分析来自5种血清型和临床分离株的18株新生隐球菌,可见有30多条大小在30~500bp的DNA-AFLP指纹,相同的血清型有不同的指纹图谱,来自同一患者不同病期的两株分离株和来自同一患者患者的不同部位的两株分离株都显示出相同的带型。结论显示了AFLP的高分辨率,是适用于新生隐球菌流行病学调查的有力工具。  相似文献   

5.
Teaumroong  N.  Boonkerd  N. 《Plant and Soil》1998,204(1):127-134
Total chromosomal DNAs from 20 Bradyrhizobium spp. strains (10 strains isolated from Vigna radiata and 10 from Arachis hypogaea) and 18 B. japonicum strains isolated from Glycine max were extracted. These DNAs served as templates for REP, ERIC and RAPD primers in PCR analyses. The patterns of the resulting PCR products were analyzed and highly specific for each strain, especially when grouped together with their antibiotic-resistance profiles. A method for extracting DNA directly from soil was developed. Recovery was approximately 30 g DNA g-1 soil and the procedure yielded DNA suitable for PCR amplification.  相似文献   

6.
Summary DNA amplification fingerprinting (DAF) is the enzymatic amplification of arbitrary stretches of DNA which is directed by very short oligonucleotide primers of arbitrary sequence to generate complex but characteristic DNA fingerprints. To determine the contribution of primer sequence and length to the fingerprint pattern and the effect of primer-template mismatches, DNA was amplified from several sources using sequence-related primers. Primers of varying length, constructed by removing nucleotides from the 5 terminus, produced unique patterns only when primers were 8 nucleotides or fewer in length. Larger primers produced either identical or related fingerprints, depending on the sequence. Single base changes within this first 8-nucleotide region of the primer significantly altered the spectrum of amplification products, especially at the 3 terminus. Increasing annealing temperatures from 15° to 70° C during amplification did not shift the boundary of the 8-nucleotide region, but reduced the amplification ability of shorter primers. Our observations define a 3-terminal oligonucleotide domain that is at least 8 bases in length and largely conditions amplification, but that is modulated by sequences beyond it. Our results indicate that only a fraction of template annealing sites are efficiently amplified during DAF. A model is proposed in which a single primer preferentially amplifies certain products due to competition for annealing sites between primer and terminal hairpin loop structures of the template.  相似文献   

7.
Genotyping of Kazakh camels Camelus dromedarius (milk breed) (n = 18) and Camelus bactrianus (meat breed) (n = 18) by alpha-S1-casein (αs1-CN) and kappa-casein (κ-CN) loci was conducted using the PCR–RFLP analysis method. A new pair of primers was suggested for the amplification of the CSN3 gene fragment with subsequent cleavage of the reaction products by AluI restriction endonuclease in order to identify the gene genetic variants. DNA polymorphism was detected only for the kappa-casein locus; no genetic polymorphism for alpha-S1-casein gene was found in the studied populations. Analysis of the results of DNA fingerprinting demonstrated that the band sharing (BS) coefficient between the groups was low enough (0.13), and the genetic distance (D) between Dromedary and Bactrian breeds was 0.305. The results of genotyping of Bactrian and Dromedary Kazakh camel breeds by alpha-S1-casein, kappa-casein loci, and DNA fingerprinting indicate that the Dromedary breed female camels are more polymorphic as compared with Bactrian.  相似文献   

8.
Fluorescent Pseudomonas strains were isolated from 38 undisturbed pristine soil samples from 10 sites on four continents. A total of 248 isolates were confirmed as Pseudomonas sensu stricto by fluorescent pigment production and group-specific 16S ribosomal DNA (rDNA) primers. These isolates were analyzed by three molecular typing methods with different levels of resolution: 16S rDNA restriction analysis (ARDRA), 16S-23S rDNA intergenic spacer-restriction fragment length polymorphism (ITS-RFLP) analysis, and repetitive extragenic palindromic PCR genomic fingerprinting with a BOX primer set (BOX-PCR). All isolates showed very similar ARDRA patterns, as expected. Some ITS-RFLP types were also found at every geographic scale, although some ITS-RFLP types were unique to the site of origin, indicating weak endemicity at this level of resolution. Using a similarity value of 0.8 or more after cluster analysis of BOX-PCR fingerprinting patterns to define the same genotypes, we identified 85 unique fluorescent Pseudomonas genotypes in our collection. There were no overlapping genotypes between sites as well as continental regions, indicating strict site endemism. The genetic distance between isolates as determined by degree of dissimilarity in BOX-PCR patterns was meaningfully correlated to the geographic distance between the isolates' sites of origin. Also, a significant positive spatial autocorrelation of the distribution of the genotypes was observed among distances of <197 km, and significant negative autocorrelation was observed between regions. Hence, strong endemicity of fluorescent Pseudomonas genotypes was observed, suggesting that these heterotrophic soil bacteria are not globally mixed.  相似文献   

9.
Fluorescent Pseudomonas strains were isolated from 38 undisturbed pristine soil samples from 10 sites on four continents. A total of 248 isolates were confirmed as Pseudomonas sensu stricto by fluorescent pigment production and group-specific 16S ribosomal DNA (rDNA) primers. These isolates were analyzed by three molecular typing methods with different levels of resolution: 16S rDNA restriction analysis (ARDRA), 16S-23S rDNA intergenic spacer-restriction fragment length polymorphism (ITS-RFLP) analysis, and repetitive extragenic palindromic PCR genomic fingerprinting with a BOX primer set (BOX-PCR). All isolates showed very similar ARDRA patterns, as expected. Some ITS-RFLP types were also found at every geographic scale, although some ITS-RFLP types were unique to the site of origin, indicating weak endemicity at this level of resolution. Using a similarity value of 0.8 or more after cluster analysis of BOX-PCR fingerprinting patterns to define the same genotypes, we identified 85 unique fluorescent Pseudomonas genotypes in our collection. There were no overlapping genotypes between sites as well as continental regions, indicating strict site endemism. The genetic distance between isolates as determined by degree of dissimilarity in BOX-PCR patterns was meaningfully correlated to the geographic distance between the isolates' sites of origin. Also, a significant positive spatial autocorrelation of the distribution of the genotypes was observed among distances of <197 km, and significant negative autocorrelation was observed between regions. Hence, strong endemicity of fluorescent Pseudomonas genotypes was observed, suggesting that these heterotrophic soil bacteria are not globally mixed.  相似文献   

10.
The method of RAPD-PCR and comparative analysis of the PCR fingerprinting profiles similarity was used to characterize interspecific diversity of natural isolates of the lactic acid bacteria Streptococcus thermophilus. The strain genetic diversity was demonstrated using three primer variants, designed for different bacterial genome regions. The resolution of RAPD-PCR technique with different primers for identification at the species level and for certification at the strain level, was examined relative to the commercially important cultures of S. thermophilus. The results provided conclusion on preferable usage of RAPD-PCR with the primer ERIC-1 for specific identification of S. thermophilus, and with the primer M13 for certification of natural isolates of this species at the strain level.  相似文献   

11.
Similarity among a number of aquatic microbial communities was examined using randomly amplified polymorphic DNA (RAPD), a common polymerase chain reaction (PCR)-based DNA fingerprinting technique. After amplification of whole-community DNA extracts, the PCR products were resolved by agarose gel electrophoresis and the band patterns compared to determine percent similarity. Twelve different primers were used to amplify approximately 100 fragments (total) from each DNA sample; the bands were scored as present or absent and the similarity between each sample was determined using Jaccard's coefficient. From this information. dendrograms were constructed and a bootstrapping procedure was used to assess how well supported the tree topologies were. Principal component analyses were also conducted as a means of visualizing the relationships among samples. Results obtained for two different experimental systems (a pair of tidal creeks and several wells in a shallow groundwater aquifer) correlated well with the temporal and spatial variations in environmental regime at the sites confirming that arbitrarily primed PCR-based DNA fingerprinting techniques such as RAPD are useful means of discriminating among microbial communities and estimating community relatedness. Moreover, this approach has several advantages over other DNA-based procedures for whole-community analysis; it is less laborious and uses smaller quantities of DNA, making it amenable to sample-intensive monitoring, and it does not depend on culturing or the use of selective PCR primers.  相似文献   

12.
Detection of DNA sequence polymorphisms among wheat varieties   总被引:7,自引:0,他引:7  
Summary A DNA marker detection strategy that allows the rapid, efficient resolution of high levels of polymorphism among closely related lines of common wheat (Triticum aestivum) has been developed to circumvent the apparent lack of restriction fragment length polymorphism in many important self-pollinated crop species. The technique of randomly amplified polymorphic DNA (RAPD) was combined with a denaturing gradient gel electrophoresis system (DGGE) to explore DNA sequence polymorphisms among different genotypes of wheat. Of the 65 primer combinations used for the polymerase chain reaction (PCR) amplifications, over 38% of them produced readily detectable and reproducible DNA polymorphisms between a spring wheat line, SO852, and a winter wheat variety, Clark. A high level of polymorphism was observed among a number of commercial varieties and breeding lines of wheat. This procedure was also used to detect polymorphisms in a recombinant inbred population to test the feasibility of its application in genome mapping. This DNA polymorphism detection system provides an opportunity for pedigree analysis and fingerprinting of developed wheat lines as well as construction of a high density genetic map of wheat. Without the need for 32P and sophisticated DNA extraction procedures, this approach should make it feasible to utilize marker-based selection in a plant breeding program.  相似文献   

13.
Summary The development of a technique for the identification of S alleles involved in self-incompatibility in Brassica oleracea which is based on the polymerase chain reaction (PCR) amplification of genomic DNA followed by restriction analysis is described. Primers homologous to conserved regions near to the 5 and 3 ends of the S coding sequence were used to amplify a number of members of the S multigene family. However, by designing a selective primer and using a higher temperature for annealing in the PCR, we were able to amplify certain members from the multigene family preferentially. These were considered to be the S-locus glycoprotein genes (SLG), since the patterns of restriction bands of the PCR products were shown to correspond to those of the SLG where sequence data were available. DNA samples from plants with certain S alleles were found not to amplify efficiently using the selective primers and high annealing temperature. This property, however, could be used as a means of distinguishing plants homozygous for these S alleles, as was demonstrated by an examination of a small F2 population that was segregating for the S5 and S29 alleles. In the investigation of the F2 population, it was found that preferential amplification of one of the alleles of the heterozygotes occurred when the consensus primers were used in the PCR. However, by using different primers, homologous to another region of the S sequence, we were able to amplify both alleles of the heterozygotes equally. The genotypes of the plants were determined by restriction analysis of PCR products and agreed with results based on pollen-tube growth tests.  相似文献   

14.
A multiplex terminal restriction fragment length polymorphism (M-TRFLP) fingerprinting method was developed and validated for simultaneous analysis of the diversity and community structure of two or more microbial taxa (up to four taxa). The reproducibility and robustness of the method were examined using soil samples collected from different habitats. DNA was PCR amplified separately from soil samples using individual taxon-specific primers for bacteria, archaea, and fungi. The same samples were also subjected to a multiplex PCR with the primers for all three taxa. The terminal restriction fragment length polymorphism profiles generated for the two sets of PCR products were almost identical not only in terms of the presence of peaks but also in terms of the relative peak intensity. The M-TRFLP method was then used to investigate rhizosphere bacterial, fungal, and rhizobial/agrobacterial communities associated with the dwarf shrub Calluna vulgaris growing in either open moorland, a mature pine forest, or a transition zone between these two habitats containing naturally regenerating pine trees. Rhizosphere microbial communities associated with Vaccinium myrtillus collected from the native pine forest were also investigated. In this study, individual PCR products from the three taxa were also pooled before restriction digestion and fragment size analysis. The terminal restriction fragment length polymorphism profiles obtained with PCR products amplified individually and with multiplexed and pooled PCR products were found to be consistent with each other in terms of the number, position, and relative intensity of peaks. The results presented here confirm that M-TRFLP analysis is a highly reproducible and robust molecular tool for simultaneous investigation of multiple taxa, which allows more complete and higher resolution of microbial communities to be obtained more rapidly and economically.  相似文献   

15.
A multiplex terminal restriction fragment length polymorphism (M-TRFLP) fingerprinting method was developed and validated for simultaneous analysis of the diversity and community structure of two or more microbial taxa (up to four taxa). The reproducibility and robustness of the method were examined using soil samples collected from different habitats. DNA was PCR amplified separately from soil samples using individual taxon-specific primers for bacteria, archaea, and fungi. The same samples were also subjected to a multiplex PCR with the primers for all three taxa. The terminal restriction fragment length polymorphism profiles generated for the two sets of PCR products were almost identical not only in terms of the presence of peaks but also in terms of the relative peak intensity. The M-TRFLP method was then used to investigate rhizosphere bacterial, fungal, and rhizobial/agrobacterial communities associated with the dwarf shrub Calluna vulgaris growing in either open moorland, a mature pine forest, or a transition zone between these two habitats containing naturally regenerating pine trees. Rhizosphere microbial communities associated with Vaccinium myrtillus collected from the native pine forest were also investigated. In this study, individual PCR products from the three taxa were also pooled before restriction digestion and fragment size analysis. The terminal restriction fragment length polymorphism profiles obtained with PCR products amplified individually and with multiplexed and pooled PCR products were found to be consistent with each other in terms of the number, position, and relative intensity of peaks. The results presented here confirm that M-TRFLP analysis is a highly reproducible and robust molecular tool for simultaneous investigation of multiple taxa, which allows more complete and higher resolution of microbial communities to be obtained more rapidly and economically.  相似文献   

16.
The nucleotide sequences of the rRNA genes and the 5 flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5 leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S–23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S–5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries.  相似文献   

17.
A PCR-based method for the quantitative detection of Lentinus edodes and Trametes versicolor, two ligninolytic fungi applied for wastewater treatment and bioremediation, was developed. Genomic DNA was used to optimize a PCR method targeting the conserved copper-binding sequence of laccase genes. The method allowed the quantitative detection and differentiation of these fungi in single and defined-mixed cultures after fractionation of the PCR products by electrophoresis in agarose gels. Amplified products of about 150 bp for L. edodes, and about 200 bp for T. versicolor were purified and cloned. The PCR method showed a linear detection response in the 1.0 g–1 ng range. The same method was tested with genomic DNA from a third fungus (Phanerochaete chrysosporium), yielding a fragment of about 400 bp. Southern-blot and DNA sequence analysis indicated that a specific PCR product was amplified from each genome, and that these corresponded to sequences of laccase genes. This PCR protocol permits the detection and differentiation of three ligninolytic fungi by amplifying DNA fragments of different sizes using a single pair of primers, without further enzymatic restriction of the PCR products. This method has potential use in the monitoring, evaluation, and improvement of fungal cultures used in wastewater treatment processes.  相似文献   

18.
A new method based on high resolution melting (HRM) analysis was developed for the differentiation and classification of the yeast species that cause food spoilage. A total 134 strains belonging to 21 different yeast species were examined to evaluate the discriminative power of HRM analysis. Two different highly variable DNA regions on the 26 rRNA gene were targeted to produce the HRM profiles of each strain. HRM-based grouping was compared and confirmed by (GTG)5 rep-PCR fingerprinting analysis. All of the yeast species belonging to the genera Pichia, Candida, Kazachstania, Kluyveromyces, Debaryomyces, Dekkera, Saccharomyces, Torulaspora, Ustilago, and Yarrowia, which were produced as species-specific HRM profiles, allowed discrimination at species and/or strain level. The HRM analysis of both target regions provided successful discrimination that correlated with rep-PCR fingerprinting analysis. Consequently, the HRM analysis has the potential for use in the rapid and accurate classification and typing of yeast species isolated from different foods to determine their sources and routes as well as to prevent contamination.  相似文献   

19.
We have compared sequencing of cloned "polymerase chain reaction" (PCR) products and the direct sequencing of PCR products in the examination of individuals from six families affected with alpha 1-antitrypsin (AAT) deficiency. In families where paternity was in question we confirmed consanguinity by DNA fingerprinting using a panel of locus-specific minisatellite probes. We demonstrate that direct sequencing of PCR amplification products is the method of choice for the absolutely specific diagnosis of AAT deficiency and can distinguish normals, heterozygotes and homozygotes in a single, rapid and facile assay. Furthermore, we demonstrate the reproducibility of the PCR and a rapid DNA isolation procedure. We have also shown that two loci can be simultaneously amplified and that the PCR product from each locus can be independently examined by direct DNA sequencing.  相似文献   

20.
Application of DNA fingerprinting methods enables the detection of diverse members of soil bacterial consortia, even including those bacteria not yet cultivated. However, extraction and purification of DNA from soil samples without bias is difficult. We compared five different DNA isolation methods and three purification methods for rhizosphere soil samples. Purified DNA extracts were amplified in PCR using universal bacterial primers and the PCR products were analysed with denaturing gradient gel electrophoresis (DGGE) for the visualisation of DNA bands representing dominant bacterial species. Both the isolation and purification methods affected the apparent bacterial community structure of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号