首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chromosomal locus, lic3, one of several involved in lipopolysaccharide (LPS) biosynthesis by Haemophilus influenzae, was cloned and its DNA sequence determined. lic3 comprises four closely apposed open reading frames (ORFs). ORF1 includes tandem repeats of the tetramer CAAT and two start codons out of frame with each other are found upstream of the repeats. ORF1 encodes a protein with no known homologues. ORF2 encodes the UDP-galactose-4-epimerase (galE) gene. ORF3 encodes a hydrophobic protein with no known homologues. ORF4 encodes the adenylate kinase (adk) gene. A deletion/insertion mutation lacking the 3' end of ORF1, all of galE, and the 5' end of ORF3 was constructed in the parent Hib strain (RM7004). These mutants had a galE phenotype, as evidenced by galactose sensitivity, altered LPS when grown in the absence of exogenous galactose, and reduced virulence in infant rats.  相似文献   

2.
A homolog of the meningococcal cps locus region E has been identified in Neisseria gonorrhoeae immediately upstream of the gonococcal region D locus. Region E has no detectable function in capsule biosynthesis in Neisseria meningitidis or in lipopolysaccharide biosynthesis in either organism. The open reading frame is homologous to proteins of unknown function in Escherichia coli and Haemophilus influenzae. Further analysis of the N. meningitidis cps cluster has identified a second copy of region D encoding three additional open reading frames, including homologs of DNA methyltransferases. The organization of the region D and E genes in N. gonorrhoeae and N. meningitidis in relation to the cps genes provides some insight into the evolutionary origin of encapsulation in N. meningitidis.  相似文献   

3.
We have identified a gene for the addition of N-acetylneuraminic acid (Neu5Ac) in an alpha-2,3-linkage to a lactosyl acceptor moiety of the lipopolysaccharide (LPS) of the human pathogen Haemophilus influenzae. The gene is one that was identified previously as a phase-variable gene known as lic3A. Extracts of H. influenzae, as well as recombinant Escherichia coli strains producing Lic3A, demonstrate sialyltransferase activity in assays using synthetic fluorescent acceptors with a terminal galactosyl, lactosyl or N-acetyl-lactosaminyl moiety. In the RM118 strain of H. influenzae, Lic3A activity is modulated by the action of another phase-variable glycosyltransferase, LgtC, which competes for the same lactosyl acceptor moiety. Structural analysis of LPS from a RM118:lgtC mutant and the non-typeable strain 486 using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed that the major sialylated species has a sialyl-alpha-(2-3)-lactosyl extension off the distal heptose. This sialylated glycoform was absent in strains containing a lic3A gene disruption. Low amounts of sialylated higher molecular mass glycoforms were present in RM118:lgtC lic3A, indicating the presence of a second sialyltransferase. Lic3A mutants of H. influenzae strains show reduced resistance to the killing effects of normal human serum. Lic3A, encoding an alpha-2,3-sialyltransferase activity, is the first reported phase-variable sialyltransferase gene.  相似文献   

4.
5.
We have identified a gene for the addition of N- acetylneuraminic acid (Neu5Ac) in an α-2,3-linkage to a lactosyl acceptor moiety of the lipopolysaccharide (LPS) of the human pathogen Haemophilus influenza e. The gene is one that was identified previously as a phase-variable gene known as lic3A . Extracts of H. influenzae , as well as recombinant Escherichia coli strains producing Lic3A, demonstrate sialyltransferase activity in assays using synthetic fluorescent acceptors with a terminal galactosyl, lactosyl or N- acetyl-lactosaminyl moiety. In the RM118 strain of H. influenzae , Lic3A activity is modulated by the action of another phase-variable glycosyltransferase, LgtC, which competes for the same lactosyl acceptor moiety. Structural analysis of LPS from a RM118: lgtC mutant and the non-typeable strain 486 using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed that the major sialylated species has a sialyl-α-(2–3)-lactosyl extension off the distal heptose. This sialylated glycoform was absent in strains containing a lic3A gene disruption. Low amounts of sialylated higher molecular mass glycoforms were present in RM118: lgtC lic3A , indicating the presence of a second sialyltransferase. Lic3A mutants of H. influenzae strains show reduced resistance to the killing effects of normal human serum. Lic3A , encoding an α-2,3-sialyltransferase activity, is the first reported phase-variable sialyltransferase gene.  相似文献   

6.
The genome sequences of Neisseria meningitidis serogroup B strain MC58 and serogroup A strain Z2491 were systematically searched for open reading frames (ORFs) encoding autotransporters. Eight ORFs were identified, six of which were present in both genomes, whereas two were specific for MC58. Among the identified ORFs was the gene encoding the known autotransporter IgA1 protease. The deduced amino acid sequences of the other identified ORFs were homologous to known autotransporters and found to contain an N-terminal signal sequence and a C-terminal domain that could constitute a beta-barrel in the outer membrane. The ORFs NMB1985 and NMB0992, encoding homologs of the Hap (for Haemophilus adhesion and penetration protein) and Hia (for Haemophilus influenzae adherence protein) autotransporters of H. influenzae, were cloned from serogroup B strain H44/76 and expressed in Escherichia coli. Western blots revealed that all sera of patients (n=14) and healthy carriers (n=3) tested contained antibodies against at least one of the recombinant proteins. These results indicate that both genes are widely distributed among N. meningitidis isolates and expressed during colonization and infection.  相似文献   

7.
The pili of Neisseria meningitidis are a key virulence factor, being major adhesins of this capsulate organism that contribute to specificity for the human host. Recently it has been reported that meningococcal pili are post-translationally modified by the addition of an O-linked trisaccharide, Gal (β1–4) Gal (α1–3) 2,4-diacetimido-2,4,6-trideoxyhexose. Using a set of random genomic sequences from N. meningitidis strain MC58, we have identified a novel gene homologous to a family of glycosyltransferases. A plasmid clone containing the gene was isolated from a genomic library of N. meningitidis strain MC58 and its nucleotide sequence determined. The clone contained a complete copy of the gene, here designated pglA (pilin glycosylation). Insertional mutations were constructed in pglA in a range of meningococcal strains with well-defined lipopolysaccharide (LPS) or pilin-linked glycan structures to determine whether pglA had a role in the biosynthesis of these molecules. There was no alteration in the phenotype of LPS from pglA mutant strains as judged by gel migration and the binding of monoclonal antibodies. In contrast, decreased gel migration of the pilin subunit molecules of pglA mutants was observed, which was similar to the migration of pilins of galE mutants of same strains, supporting the notion that pglA is a glycosyltransferase involved in the biosynthesis of the pilin-linked trisaccharide structure. The pglA mutation, like the galE mutation reported previously, had no effect on pilus-mediated adhesion to human epithelial or endothelial cells. Pilin from pglA mutants were unable to bind to monospecific antisera recognizing the Gal (β1–4) Gal structure, suggesting that PglA is a glycosyltransferase involved in the addition of galactose of the trisaccharide substituent of pilin.  相似文献   

8.
We have identified and defined the function of kpsF of Neisseria meningitidis and the homologues of kpsF in encapsulated K1 and K5 Escherichia coli. KpsF was shown to be the arabinose-5-phosphate isomerase, an enzyme not previously identified in prokaryotes, that mediates the interconversion of ribulose 5-phosphate and arabinose 5-phosphate. KpsF is required for 3-deoxy-d-manno-octulosonic acid (Kdo) biosynthesis in N. meningitidis. Mutation of kpsF or the gene encoding the CMP-Kdo synthetase (kpsU/kdsB) in N. meningitidis resulted in expression of a lipooligosaccharide (LOS) structure that contained only lipid A and reduced capsule expression in the five invasive disease-associated meningococcal serogroups (A, B, C, Y, and W-135). The step linking meningococcal capsule and LOS biosynthesis was shown to be Kdo production as the expression of capsule was wild type in a Kdo transferase (kdtA) mutant. Thus, in addition to lipooligosaccharide assembly, Kdo is required for meningococcal capsular polysaccharide expression. Furthermore, N. meningitidis, unlike enteric Gram-negative bacteria, can survive and synthesize only unglycosylated lipid A.  相似文献   

9.
Haemophilus influenzae expresses heterogeneous populations of short-chain lipopolysaccharide (LPS) which exhibit extensive antigenic diversity among multiple oligosaccharide epitopes. These LPS oligosaccharide epitopes can carry phosphocholine (PCho) substituents, the expression of which is subject to high frequency phase variation mediated by genes in the lic1 genetic locus. The location and site of attachment of PCho substituents were determined by structural analysis of LPS from two type b H. influenzae strains, Eagan and RM7004. The lic2 locus is involved in phase variation of oligosaccharide expression. LPS obtained from the parent strains, from mutants generated by insertion of antibiotic resistance cassettes in the lic2 genetic locus, and from phase-variants showing high levels of PCho expression was characterized by electrospray ionization-mass spectrometry (ESI-MS) and 1H NMR spectroscopy of derived O-deacylated samples. ESI-MS of O-deacylated LPS from wild-type strains revealed mixtures of related glycoform structures differing in the number of hexose residues. Analysis of LPS from PCho-expressing phase-variants revealed similar mixtures of glycoforms, each containing a single PCho substituent. O-Deacylated LPS preparations from the lic2 mutants were much less complex than their respective parent strains, consisting only of Hex3 and/or Hex2 glycoforms, were examined in detail by high-field NMR techniques. It was found that the LPS samples contain the phosphoethanolamine (PEtn) substituted inner-core element, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1--> 3)-L-alpha-D-He pp-(1-->5)-alpha-Kdo in which the major glycoforms carry a beta-D-Glcp or beta-D-Glcp-(1-->4)-beta-D-Glcp at the O-4 position of the 3-substituted heptose (HepI) and a beta-D-Galp at the O-2 position of the terminal heptose (HepIII). LPS from the lic2 mutants of both type b strains were found to carry PCho groups at the O-6 position of the terminal beta-D-Galp residue attached to HepIII. In the parent strains, the central heptose (HepII) of the LPS inner-core element is also substituted by hexose containing oligosaccharides. The expression of the galabiose epitope in LPS of H. influenzae type b strains has previously been linked to genes comprising the lic2 locus. The present study provides definitive evidence for the role of lic2 genes in initiating chain extension from HepII. From the analysis of core oligosaccharide samples, LPS from the lic2 mutant strain of RM7004 was also found to carry O-acetyl substituents. Mono-, di-, and tri-O-acetylated LPS oligosaccharides were identified. The major O-acetylated glycoforms were found to be substituted at the O-3 position of HepIII. A di-O-acetylated species was characterized which was also substituted at the O-6 postion of the terminal beta-D-Glc in the Hex3 glycoform. This is the first report pointing to the occurrence of O-acetyl groups in the inner-core region of H. influenzae LPS. We have previously shown that in H. influenzae strain Rd, a capsule-deficient type d strain, PCho groups are expressed in a different molecular environment, being attached at the O-6 position of a beta-D-Glcp, which is in turn attached to HepI.  相似文献   

10.
Abstract Mutagenesis with the transposon Tn916 was used as a strategy to identify genes required for synthesis of the Galα(1–4)βGal component of Haemophilus influenzae strain RM7004 lipopolysaccharide. Insertion of Tn916 into an open reading frame (ORF) encoding a protein with 75% homology to the Escherichia coli methionine related protein (Mrp) is described. Mutations in mrp resulted in loss of reactivity with monoclonal antibody (mAb) 4C4, which recognises Galα(1–4)βGal, and expression of LPS with a different electrophoretic profile to that of wild-type RM7004. An unexpected feature of this mutation was that it appeared to influence the number of copies of 5'-CAAT-3' present in lic2A , a gene which is also required for biosynthesis and phase variable expression of the Galα(1–4)βGal LPS epitope.  相似文献   

11.
Phosphorylcholine (ChoP) is a potential candidate for a plurispecific vaccine, because it is present on surface components of many mucosal organisms, including Haemophilus influenzae, Streptococcus pneumoniae and Pseudomonas aeruginosa. In addition, ChoP has been detected on pili of Neisseria meningitidis and Neisseria gonorrhoeae. In this study, we demonstrate the presence of the phosphorylcholine epitope on the lipopolysaccharides (LPSs) of several species of commensal Neisseriae (Cn), a property that differentiates commensal from the pathogenic strains of Neisseriae. In an extended survey of 78 strains, we confirmed the exclusive expression of the ChoP epitope on pili of pathogenic Neisseriae. Despite the presence of pili on Cn, which are homologous to Class II pili of N. meningitidis, they did not react with anti-ChoP antibody. This observation was further supported by the fact that 14C-labelled choline was incorporated only in the LPSs of Cn. Analysis of the LPS of N. lactamica strain NL4 revealed two distinct and interconvertible molecular species of LPS with high and low levels of reactivity with anti-ChoP antibody. In addition, on/off phase variation gave rise to frequent modulation in the levels of antibody reactivity. A concurrent modulation was also observed in the binding of C-reactive protein, CRP, a ChoP-binding reactant that is implicated in bacterial clearance. Genetic analysis showed the presence of a gene in several Cn spp. with significant sequence identity to H. influenzae licA. This gene encodes choline kinase and is also involved in phase variation of the LPS-associated ChoP in H. influenzae. In contrast, licA-like genes were not identified in the pathogenic Neisseria strains tested. They are absent from N. meningitidis strain Z2491 genome database. These data suggest that the genetic basis for ChoP incorporation in Cn LPS resembles that in H. influenzae spp. and may be distinct from that generating the ChoP epitope on pili of pathogenic Neisseriae. Further, the modulation of ChoP expression on Cn LPS, and corresponding modulation of CRP binding, has the potential to confer the property of immune avoidance and thus of persistence on mucosa.  相似文献   

12.
The structure of the phase-variable lipopolysaccharide (LPS) from the group B Neisseria meningitidis strain BZ157 galE was elucidated. The structural basis for the LPS's variation in reactivity with a monoclonal antibody (MAb) B5 that has specificity for the presence of phosphoethanolamine (PEtn) at the 3-position of the distal heptose residue (HepII) was established. The structure of the O-deacylated LPS was deduced by a combination of monosaccharide analyses, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. These analyses revealed the presence of a novel inner core oligosaccharide (OS) structure in the MAb B5 reactive (B5+) LPS that contained two PEtn residues simultaneously substituting the 3- and 6-positions of the HepII residue. The determination of this structure has identified a further degree of variability within the inner core OS of meningococcal LPS that could contribute to the interaction of meningococcal strains with their host.  相似文献   

13.
We previously described a gene, lpt3, required for the addition of phosphoethanolamine (PEtn) at the 3 position on the beta-chain heptose (HepII) of the inner-core Neisseria meningitidis lipopolysaccharide (LPS), but it has long been recognized that the inner-core LPS of some strains possesses PEtn at the 6 position (PEtn-6) on HepII. We have now identified a gene, lpt6 (NMA0408), that is required for the addition of PEtn-6 on HepII. The lpt6 gene is located in a region previously identified as Lgt-3 and is associated with other LPS biosynthetic genes. We screened 113 strains, representing all serogroups and including disease and carriage strains, for the lpt3 and lpt6 genes and showed that 36% contained both genes, while 50% possessed lpt3 only and 12% possessed lpt6 only. The translated amino acid sequence of lpt6 has a homologue (72.5% similarity) in a product of the Haemophilus influenzae Rd genome sequence. Previous structural studies have shown that all H. influenzae strains investigated have PEtn-6 on HepII. Consistent with this, we found that, among 70 strains representing all capsular serotypes and nonencapsulated H. influenzae strains, the lpt6 homologue was invariably present. Structural analysis of LPS from H. influenzae and N. meningitidis strains where lpt6 had been insertionally inactivated revealed that PEtn-6 on HepII could not be detected. The translated amino acid sequences from the N. meningitidis and H. influenzae lpt6 genes have conserved residues across their lengths and are part of a family of proven or putative PEtn transferases present in a wide range of gram-negative bacteria.  相似文献   

14.
The protective activity of the sera of mice immunized with the preparations of native and detoxified N. meningitidis lipopolysaccharide (LPS), group A, as well as with monoclonal antibodies to N. meningitidis antigens, groups A and B, was studied on the mucin model of meningococcal infection. The study showed that the maximum level of anti-LPS antibodies in mice was observed on day 7 after the injection of LPS. Immune sera obtained from mice were capable of protecting the animals from fetal meningococcemia induced by N. meningitidis strains of homologous and heterologous groups. As shown by the results of this study, the alkaline treatment of N. meningitidis native LPS did not decrease the protective properties of antibodies. The monoclonal antibodies under study were found to possess high preventive activity in mice challenged with N. meningitidis, groups A and B. Anti-LPS monoclonal antibodies showed greater protective activity than antipolysaccharide monoclonal antibodies.  相似文献   

15.
A genetic basis for the biosynthetic assembly of the globotetraose containing lipopolysaccharide (LPS) of Haemophilus influenzae strain RM118 (Rd) was determined by structural analysis of LPS derived from mutant strains. We have previously shown that the parent strain RM118 elaborates a population of LPS molecules made up of a series of related glycoforms differing in the degree of oligosaccharide chain extension from the distal heptose residue of a conserved phosphorylated inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)-]-L-alpha-D-Hepp-(1-->5)-alpha-Kdo. The fully extended LPS glycoform expresses the globotetraose structure, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp. A fingerprinting strategy was employed to establish the structure of LPS from strains mutated in putative glycosyltransferase genes compared to the parent strain. This involved glycose and linkage analysis on intact LPS samples and analysis of O-deacylated LPS samples by electrospray ionization mass spectrometry and 1D (1)H-nuclear magnetic resonance spectroscopy. Four genes, lpsA, lic2A, lgtC, and lgtD, were required for sequential addition of the glycoses to the terminal inner-core heptose to give the globotetraose structure. lgtC and lgtD were shown to encode glycosyltransferases by enzymatic assays with synthetic acceptor molecules. This is the first genetic blueprint determined for H. influenzae LPS oligosaccharide biosynthesis, identifying genes involved in the addition of each glycose residue.  相似文献   

16.
Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.   总被引:9,自引:5,他引:4       下载免费PDF全文
The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases.  相似文献   

17.
18.
Haemophilus influenzae lipopolysaccharide (LPS) contains structures, defined by monoclonal antibodies, which undergo phase variation. This investigation reports the nucleotide sequence of lic2A, which is required for the expression of at least three phase-variable LPS epitopes, one of which has the structure αGal(1–4)βGal. lic2A contains multiple tandem repeats of the tetramer 5′-CAAT-3′ Previous studies have correlated changes in the number of 5′-CAAT-3′ repeats with the phase-variable expression of the αGal(1–4)βGal epitope. To obtain direct evidence for this, the 5′-CAAT-3′ repeat region from lic2A was amplified directly from immunostained colonies and sequenced. This demonstrated that the variable expression of LPS epitopes, including αGal(1–4)βGal, is in part directly dependent upon the number of copies of 5′-CAAT-3′ within lic2A.  相似文献   

19.
The nucleotide sequence of region 1 of the K5 antigen gene cluster of Escherichia coli was determined. This region is postulated to encode functions which, at least in part, participate in translocation of polysaccharide across the periplasmic space and onto the cell surface. Analysis of the nucleotide sequence revealed five genes that encode proteins with predicted molecular masses of 75.7, 60.5, 44, 43, and 27 kDa. The 27-kDa protein was 70.7% homologous to the CMP-2-keto-3-deoxyoctulosonic acid synthetase enzyme encoded by the E. coli kdsB gene, indicating the presence of a structural gene for a similar enzyme within the region 1 operon. The 43-kDa protein was homologous to both the Ctrb and BexC proteins encoded by the Neisseria meningitidis and Haemophilus influenzae capsule gene clusters, respectively, indicating common stages in the expression of capsules in these gram-negative bacteria. However, no homology was detected between the 75.7, 60.5-, and 44-kDa proteins and any of the proteins so far described for the H. influenzae and N. meningitidis capsule gene clusters.  相似文献   

20.
Neisseria meningitidis causes sepsis with coagulopathy. The present study evaluated the tissue factor (TF)-inducing capacity of bacterial LPS in different presentation forms, i.e. membrane-bound LPS versus purified LPS, and of non-LPS components of N. meningitidis. By using a wild-type N. meningitidis, a mutant N. meningitidis lacking LPS (LPS-deficient N. meningitidis), purified LPS from N. meningitidis and Escherichia coli, we measured TF-expression and TF-activity on human monocytes and microparticles (MPs). The effect of TF-modulators, such as phosphatidylserine (PS), tissue factor pathway inhibitor (TFPI) and recombinant IL-10 (rhIL-10) was investigated. In plasmas from meningococcal patients, fibrinopeptide A (FPA), LPS and IL-10 were quantified. Monocytes and MPs exposed to purified LPS or wild-type N. meningitidis had much higher TF-activity than monocytes and MPs exposed to LPS-deficient N. meningitidis (clot formation assay). Incubation with wild-type N. meningitidis, but also LPS-deficient N. meningitidis, resulted in TF-expression on monocytes (flow cytometry, qRT-PCR). Increased cellular TF-activity is associated with coincident surface-exposure of PS and the number of monocytes positive for both PS and TF was significantly higher for monocytes exposed to wild-type N. meningitidis (7.6%) compared with monocytes exposed to LPS-deficient N. meningitidis (1.8%). Treatment with rhIL-10 reduced monocyte- and MP-associated TF-activity, the number of monocytes positive for both TF and PS, and microvesiculation. Patients with meningococcal septicemia had significantly higher levels of LPS, FPA and IL-10 than patients with distinct meningitis. Our results indicate that LPS from N. meningitidis is crucial for inducing TF-activity, but not for monocyte- and MP-associated TF-expression. TF-activity seems to require coincident expression of TF and PS on monocytes, and LPS induces such double-positive monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号