首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The structures of the two stable conformers of Escherichia coli 5 S RNA, the and B form, were compared. Information about the structures were obtained using the methods of limited enzymatic hydrolysis and chemical modification of accessible nucleotides. Base-specific modifications were performed for adenosines and cytidines using diethylpyrocarbonate and dimethylsulfate in combination with a strand-scission reaction at the modified site. Base-specific (RNase T1) as well as conformation-specific (nuclease S1, cobra venom nuclease) enzymes were employed for the limited enzymatic hydrolysis. Clear differences in the accessibility of the two 5 S RNA conformers to the enzymes and the chemical reagents were established and the regions with altered reactivities were localized in the 5 S RNA structure. The results are consistent with the disruption of the secondary structural interactions in helix II and partly in helices III and IV during the transition from the A to the B form. (The numbering of the helices is according to the generally accepted Fox and Woese model.) In addition some regions presumably involved in the tertiary structure are distorted. There is evidence, however, for the new formation of structural regions between two distant sites in the 5 S RNA B form. The results enable us to refine the existing 5 S RNA A-form model and provide insight into the structural dynamics that lead to the formation of the 5 S RNA B form.  相似文献   

2.
Two distinct conformations of rat liver ribosomal 5S RNA.   总被引:7,自引:7,他引:0       下载免费PDF全文
Three different conformers of rat liver 5S ribosomal RNA were investigated by partial nuclease cleavage technique using S1 nuclease and cobra venom endoribonuclease (CVE) as conformational probes. Urea-treated and renatured 5S RNA co-migrate on non-denaturing gels, but exhibit distinct differences in their nuclease cleavage patterns. The most prominent differences in S1 nuclease and CVE accessibility of these conformers are located in region 30-50 and around nucleotides 70 and 90. The third form of 5S RNA with higher electrophoretic mobility was generated by EDTA treatment. The cleavage patterns of this 5S RNA conformer are similar to that characteristic for the renatured 5S RNA. The results demonstrate the difference in secondary structure and possibly different tertiary base-pairing interactions of 5S RNA conformers.  相似文献   

3.
RNA extracts from the isthmus of laying hen oviduct contain truncated 5S RNA molecules that were found to be shorter at their 5' terminus as compared to native 5S RNA I and II. Moreover one of the truncated species differs from 5S RNA I by the absence of the 3' end nucleotide. The truncated forms increase of about 70% the total 5S RNA (intact + truncated) in the isthmus, as compared to the other studied tissues. Furthermore 5S RNA I is heterogeneous: 25% have A instead of U at the 3' end, and some evidence was obtained for the existence of two 5S RNA I conformers.  相似文献   

4.
The topographies of the A and B conformers of free 5 S RNA have been examined using kethoxal as a probe of single-stranded, accessible guanine residues. Each of the kethoxal-reactive guanines has been identified using diagonal electrophoresis, and the relative rate of modification at each site has been studied.Free 5 S RNA in the A form has several reactive guanines in addition to G13 and G41, which are the only two available for reaction in the intact 50 S ribosomal subunit (Noller &; Herr, 1974). The relative reactivities of these sites are G41 ? G13 > G69 > G24 > G86 > G107 > G16, G23, G44. Modification at G23 and G44 reaches maximum values of only about 0.05 mol per mol 5 S RNA, suggesting that these residues are unreactive in the major conformer of the A form population. These results are compatible with a secondary structure model based on phylogenetic sequence conservation (Fox &; Woese, 1975), but imply that 12 of the 18 unpaired guanines in this model are involved in further molecular interactions.The modification pattern of the B conformer demands a different base-pairing arrangement and shows that the B form contains less structure than the A form. The relative reactivities in the B form are G13 > G102 > G16 > G24, G44 > G61, G100 > G23, G51, G107 > G54, G56. Several sites show plateaux at submolar modification levels, indicating the existence of some conformational heterogeneity in preparations of the B form of 5 S RNA. Heat-denatured 5 S RNA appears to contain a mixture of conformers including the A and B form.These results place limitations on certain structural and functional models for 5 S RNA. For example, G44, which has often been implicated in base-pairing with tRNA, is accessible in the B form but not in the A form. Yet the B form does not bind the 5 S RNA-specific ribosomal proteins, nor is there evidence for its existence in the ribosome.  相似文献   

5.
6.
Ribosomal protein S4 represses synthesis of the four ribosomal proteins (including itself) in the Escherichia coli alpha operon by binding to a nested pseudoknot structure that spans the ribosome binding site. A model for the repression mechanism previously proposed two unusual features: (i) the mRNA switches between conformations that are "active" or "inactive" in translation, with S4 as an allosteric effector of the inactive form, and (ii) S4 holds the 30 S subunit in an unproductive complex on the mRNA ("entrapment"), in contrast to direct competition between repressor and ribosome binding ("displacement"). These two key points have been experimentally tested. First, it is found that the mRNA pseudoknot exists in an equilibrium between two conformers with different electrophoretic mobilities. S4 selectively binds to one form of the RNA, as predicted for an allosteric effector; binding of ribosomal 30 S subunits is nearly equal in the two forms. Second, we have used S4 labeled at a unique cysteine with either of two fluorophores to characterize its interactions with mRNA and 30 S subunits. Equilibrium experiments detect the formation of a specific ternary complex of S4, mRNA pseudoknot, and 30 S subunits. The existence of this ternary complex is unambiguous evidence for translational repression of the alpha operon by an entrapment mechanism.  相似文献   

7.
Identification of dynamic sequences in the central domain of 7SL RNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
C Zwieb  E Ullu 《Nucleic acids research》1986,14(11):4639-4657
  相似文献   

8.
Formation and stability of the 5 S RNA transcription complex   总被引:49,自引:0,他引:49  
  相似文献   

9.
Does 5S RNA from E. coli have a pseudoknotted structure?   总被引:5,自引:3,他引:2       下载免费PDF全文
Chemical modification and limited enzymatic hydrolysis on isolated E. coli 5S RNA have provided informations on the secondary- and tertiary structure compatible with pseudoknotted structures for the A- and B-conformers of the molecule. Changes in the accessibility and reactivity of nucleotides in loop C and at the stem of helix IV in two different 5S RNA conformers are highly suggestive for interactions between bases C35 to C37 with G105 to G107 for the A-form and C38 to U40 and A94 to G96 with additional interactions of C35, C37 with G98 and G100 for the B-form. In both cases the molecules are folded forming pseudoknots and two quasi--continuous double stranded helices with coaxial stacking. The two structures are in perfect agreement with the biochemical data concerning the stability of the molecule and the chemical reactivities of individual nucleotides of the 5S RNA A- and B-conformers.  相似文献   

10.
11.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

12.
Identification of Saint Louis encephalitis virus mRNA.   总被引:5,自引:5,他引:0       下载免费PDF全文
Saint Louis encephalitis (SLE) virus-specific RNA was recovered from infected HeLa cells by sodium dodecyl sulfate (SDS)-phenol-chloroform extraction, and the molecular species were resolved by SDS-sucrose gradient centrifugation and agarose gel electrophoresis. Sucrose gradient centrifugation revealed the presence of a 45S species, minor 20 to 30S heterogeneous species, and an 8 to 10 S RNA species in the cytoplasmic extract. Analysis of the same samples by electrophoresis on agarose gels, under both nondenaturing and denaturing conditions, revealed only two virus-specific RNA molecules, the 45S genome-sized RNA and an 8 to 10S species. Varying the gel concentration to facilitate analysis of nucleic acids with molecular weights ranging from 25,000 to 25 X 10(6) failed to reveal additional RNA species, although low levels of a putative double-stranded replicative form could conceivably have escaped detection. From our observations it appears that the heterogeneous RNA species and presumably the 20S RNase-resistant species reported in other investigations of flavivirus RNA are degradation products or conformers of the 45S molecule. Polysomes from SLE virus-infected cells were prepared and separated from contaminating nucleocapsid by centrifugation on discontinuous sucrose gradients. RNA extracted from these polysome preparations was analyzed by sucrose gradient centrifugation and agarose gel electrophoresis. The 45S SLE virus genome-size molecule was found to be the only RNA species associated with the polysomes. This molecule was sensitive to RNase digestion and was released from polysomes by EDTA and puromycin treatment. These findings provide direct evidence that the 45 S SLE virus RNA serves as the messenger during virus replication, in contrast to the 26S RNA species which functions as the predominant messenger during alphavirus replication.  相似文献   

13.
Different stable forms of Escherichia coli and rat liver 5S rRNA have been probed by Pb(II)-induced hydrolysis. In the native A forms of 5S rRNA, Pb2+ reveal single-stranded RNA stretches and regions of increased conformational flexibility or distorted by the presence of bulged nucleotides. Hydrolysis of urea/EDTA-treated E. coli 5S rRNA (B form) shows the presence of two strong helical domains; helix A retained from the A form and a helix composed of RNA regions G33-C42 and G79-C88. Other RNA regions resistant to hydrolysis may be involved in alternative base pairing, causing conformational heterogeneity of that form. Pb(II)-induced hydrolysis distinguishes two different forms of rat liver 5S rRNA; the native A form and the form obtained by renaturation of 5S rRNA in the presence of EDTA. Pb(II)-hydrolysis data suggest that both forms are highly structured. In the latter form, the orientation of the bulged C66 is changed with respect to helix B. At the same time, a new helical segment is possibly formed, composed of nucleotides from helix C and loop c on one side and from helix E and loop d' on the other.  相似文献   

14.
J W Fox  D P Owens  K P Wong 《Biochemistry》1978,17(8):1357-1364
The denaturation of ribosome and RNA by ethylene glycol (EG) has been studied in an attempt to further understand the conformation and stability of the ribosome. At high concentrations of EG, the ribosome, its subunits, and 16S RNA undergo drastic structural changes as shown by circular dichroism, ultraviolet absorption spectroscopy, and sedimentation velocity. Two separate conformational transitions were observed for the 30S subunit; one from 30 to 50% EG and another from 60 to 90% EG. This observation suggests the presence of two "domains" in the 30S subunit which differ in their stability. However, the 50S subunit undergoes a single sharp transition at 60 to 90% EG, consistent with the notion of a highly cooperative conformation. Association of the subunits stablizes part of the 30S subunit since the transition curve for the 70S ribosome does not exhibit significant change at the low EG concentration region as seen for the 30S subunit. Removal of proteins from the 30S subunit broadens the transition curve to lower EG concentrations and suggests the role of proteins in stabilizing the conformation of the 16S RNA.  相似文献   

15.
16.
The 2'-5' RNA ligase family members are bacterial and archaeal RNA ligases that ligate 5' and 3' half-tRNA molecules with 2',3'-cyclic phosphate and 5'-hydroxyl termini, respectively, to the product containing the 2'-5' phosphodiester linkage. Here, the crystal structure of the 2'-5' RNA ligase protein from an extreme thermophile, Thermus thermophilus HB8, was solved at 2.5A resolution. The structure of the 2'-5' RNA ligase superimposes well on that of the Arabidopsis thaliana cyclic phosphodiesterase (CPDase), which hydrolyzes ADP-ribose 1",2"-cyclic phosphate (a product of the tRNA splicing reaction) to the monoester ADP-ribose 1"-phosphate. Although the sequence identity between the two proteins is remarkably low (9.3%), the 2'-5' RNA ligase and CPDase structures have two HX(T/S)X motifs in their corresponding positions. The HX(T/S)X motifs play important roles in the CPDase activity, and are conserved in both the CPDases and 2'-5' RNA ligases. Therefore, the catalytic mechanism of the 2'-5' RNA ligase may be similar to that of the CPDase. On the other hand, the electrostatic potential of the cavity of the 2'-5' RNA ligase is positive, but that of the CPDase is negative. Furthermore, in the CPDase, two loops with low B-factors cover the cavity. In contrast, in the 2'-5' RNA ligase, the corresponding loops form an open conformation and are flexible. These characteristics may be due to the differences in the substrates, tRNA and ADP-ribose 1",2"-cyclic phosphate.  相似文献   

17.
The structure of the RNA binding site of ribosomal proteins S8 and S15.   总被引:12,自引:0,他引:12  
Proteins S8 and S15 from the 30 S ribosomal subunit of Escherichia coli were bound to 16 S RNA and digested with ribonuclease A. A ribonucleoprotein complex was isolated which contained the two proteins and three noncontiguous RNA subfragments totaling 93 nucleotides, that could be unambiguously located in the 16 S RNA sequence. We present a secondary structural model for the RNA moiety of the binding site complex, in which the two smaller fragments are extensively base-paired, respectively, to the two halves of the large fragment, to form two disconnected duplexes. Each of the two duplexes is interrupted by a small internal loop. This model is supported by (i) minimum energy considerations, (ii) sites of cleavage by ribonuclease A, and (iii) modification by the single strand-specific reagent kethoxal. The effect of protein binding on the topography of the complex is reflected in the kethoxal reactivity of the RNA moiety. In the absence of the proteins, 5 guanines are modified; 4 of these, at positions 663, 732, 733, and 741, are strongly protected from kethoxal when protein S15 is bound.  相似文献   

18.
A simple stereochemical framework for understanding RNA structure has remained elusive to date. We present a comprehensive conformational map for two nucleoside-5',3'-diphosphates and for a truncated dinucleotide derived from a grid search of all potential conformers using hard sphere steric exclusion criteria to define allowed conformers. The eight-dimensional conformational space is presented as a series of two-dimensional projections. These projections reveal several well-defined allowed and disallowed regions which correlate well with data obtained from X-ray crystallography of both large and small RNA molecules. Furthermore, the two-dimensional projections show that consecutive and ribose ring-proximal torsion angles are interdependent, while more distant torsion angles are not. Remarkably, using steric criteria alone, it is possible to generate a predictive conformational map for RNA.  相似文献   

19.
20.
The ribonucleic acid (RNA) product resulting from annealing R17 RNA with denatured replicative form or replicative intermediate could be divided into two distinct types of RNA by precipitation in 1.5 m NaCl. The RNA found in the salt supernatant fluid was resistant to digestion by ribonuclease, had a sedimentation coefficient of 15S, and displayed a sharp thermal transition. The RNA in the salt supernatant fluid appeared to be identical to replicative form. The RNA found in the salt precipitate was resistant to digestion by ribonuclease, but possessed both single- and double-stranded characteristics. The RNA sedimented as a broad band in a sucrose gradient, with a sedimentation coefficient of 15S, and displayed a melting transition characteristic of a mixture of single- and double-stranded RNA. Mild ribonuclease digestion of the salt-precipitable RNA produced a ribonuclease-resistant material with sedimentation properties identical to the RNA found in the salt supernatant fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号