首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The symbiotic plasmid of Rhizobium etli CE3 belongs to the RepABC family of plasmid replicons. This family is characterized by the presence of three conserved genes, repA, repB, and repC, encoded by the same DNA strand. A long intergenic sequence (igs) between repB and repC is also conserved in all members of the plasmid family. In this paper we demonstrate that (i) the repABC genes are organized in an operon; (ii) the RepC product is essential for replication; (iii) RepA and RepB products participate in plasmid segregation and in the regulation of plasmid copy number; (iv) there are two cis-acting incompatibility regions, one located in the igs (incalpha) and the other downstream of repC (incbeta) (the former is essential for replication); and (v) RepA is a trans-acting incompatibility factor. We suggest that incalpha is a cis-acting site required for plasmid partitioning and that the origin of replication lies within incbeta.  相似文献   

3.
Katsura Y  Satta Y 《PloS one》2011,6(6):e20365
The evolutionary mode of a multi-gene family can change over time, depending on the functional differentiation and local genomic environment of family members. In this study, we demonstrate such a change in the melanoma antigen (MAGE) gene family on the mammalian X chromosome. The MAGE gene family is composed of ten subfamilies that can be categorized into two types. Type I genes are of relatively recent origin, and they encode epitopes for human leukocyte antigen (HLA) in cancer cells. Type II genes are relatively ancient and some of their products are known to be involved in apoptosis or cell proliferation. The evolutionary history of the MAGE gene family can be divided into four phases. In phase I, a single-copy state of an ancestral gene and the evolutionarily conserved mode had lasted until the emergence of eutherian mammals. In phase II, eight subfamily ancestors, with the exception for MAGE-C and MAGE-D subfamilies, were formed via retrotransposition independently. This would coincide with a transposition burst of LINE elements at the eutherian radiation. However, MAGE-C was generated by gene duplication of MAGE-A. Phase III is characterized by extensive gene duplication within each subfamily and in particular the formation of palindromes in the MAGE-A subfamily, which occurred in an ancestor of the Catarrhini. Phase IV is characterized by the decay of a palindrome in most Catarrhini, with the exception of humans. Although the palindrome is truncated by frequent deletions in apes and Old World monkeys, it is retained in humans. Here, we argue that this human-specific retention stems from negative selection acting on MAGE-A genes encoding epitopes of cancer cells, which preserves their ability to bind to highly divergent HLA molecules. These findings are interpreted with consideration of the biological factors shaping recent human MAGE-A genes.  相似文献   

4.
A family of 40 terpenoid synthase genes ( AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic placement, the genes for plant monoterpene synthases, sesquiterpene synthases or diterpene synthases of secondary metabolism. Rapid evolution of these AtTPS resulted from repeated gene duplication and sequence divergence with minor changes in gene architecture. In contrast, only two AtTPS genes have known functions in basic (primary) metabolism, namely gibberellin biosynthesis. This striking difference in rates of gene diversification in primary and secondary metabolism is relevant for an understanding of the evolution of terpenoid natural product diversity. Eight AtTPS genes are interrupted and are likely to be inactive pseudogenes. The localization of AtTPS genes on all five chromosomes reflects the dynamics of the Arabidopsis genome; however, several AtTPS genes are clustered and organized in tandem repeats. Furthermore, some AtTPS genes are localized with prenyltransferase genes ( AtGGPPS, geranylgeranyl diphosphate synthase) in contiguous genomic clusters encoding consecutive steps in terpenoid biosynthesis. The clustered organization may have implications for TPS gene evolution and the evolution of pathway segments for the synthesis of terpenoid natural products. Phylogenetic analyses highlight events in the divergence of the TPS paralogs and suggest orthologous genes and a model for the evolution of the TPS gene family.  相似文献   

5.
6.
Tumor suppressor genes   总被引:10,自引:0,他引:10  
The retinoblastoma sensitivity protein (Rb) and the p53 gene product both appear to function as negative regulators of cell division or abnormal cellular growth in some differentiated cell types. Several types of cancers have been shown to be derived from cells that have extensively mutated both alleles of one or both of these genes, resulting in a loss-of-function mutation. In the case of the p53 gene, this mutational process appears to occur in two steps, with the first mutation at the p53 locus resulting in a trans-dominant phenotype. The mutant p53 gene product enters into an oligomeric protein complex with the wild-type p53 protein derived from the other normal allele and such a complex is inactive or less efficient in its negative regulation of growth control. This intermediate stage of carcinogenesis selects for the proliferation of cells with one mutant allele, enhancing the probability of obtaining a cancer cell with both alleles damaged. The DNA tumor viruses have evolved mechanisms to interact with the Rb and p53 negative regulators of cellular growth in order to enhance their own replication in growing cells. SV40 and adenovirus type 5 produce viral encoded proteins that also form oligomeric protein complexes with p53 and Rb, presumably inactivating their functions. These viral proteins are also the oncogene products of these viruses. Thus, the mechanisms by which cancer may arise in a host, via mutations or virus infections, have fundamental common pathways effecting the same cellular genes and gene products; Rb and p53.  相似文献   

7.
8.
Multidrug resistance (MDR) of neoplastic cells, i.e. resistance towards large groups of unrelated drugs, represents the phenomenon that dramatically depresses the effectiveness of cancer chemotherapy. Membrane transport of ATPases from ABC superfamily plays an important role in MDR. In the present paper we are aiming to compare two members of this family: P-glycoprotein (PGP products of mdr genes) and multidrug resistance-associated protein (MRP, products of mrp genes) and their impact for MDR of neoplastic cells.  相似文献   

9.
Anti-apoptotic genes of baculoviruses   总被引:6,自引:0,他引:6  
Baculoviruses possess two different classes of genes with anti-apoptptic activity: p35 and iap. The p35 gene product (P35) is able to block apoptosis induced by a variety of stimuli in phylogenetically diverse organisms. P35 has recently been shown to be capable of inhibiting the ICE/ced-3 family of cysteine proteases, a family of enzymes which are implicated in cell death and which exhibit specificity for cleavage at aspartate residues. The products of the iap genes are a distinct class of proteins containing a carboxyl ring finger and tandem duplications of a unique motif known as the BIR motif. Homologues of the baculovirus iap genes have been identified in the human genome. Both classes of baculovirus anti-apoptotic genes will continue to be important tools in defining the pathways involved in apoptosis. Since our demonstration in 1991 that a baculovirus prevents host cells from undergoing apoptosis by expressing a gene known as p35(Clem et al., 1991), the study of baculovirus-induced apoptosis and the anti-apoptotic genes they possess has led to discoveries with far-reaching implications for viral pathogenesis, human disease, and the study of cell death. It is now known that a variety of eukaryotic viruses encode genes which allow them to control cellular apoptosis. Understanding the mechanism(s) by which these viral gene products act provides fundamental insights into the pathways regulating apoptosis. In this review, we discuss the inhibition of apoptosis by baculoviruses, concentrating mainly on the nature and mechanism of action of the two classes of baculovirus genes, p35 and iap, which are able to control apoptosis in a diversity ofeukaryotes.  相似文献   

10.
11.
12.
Type C RNA viruses have been considered oncogenic because they are found associated with animal tumors and can induce cancers in several animal species. Those viruses that rapidly cause cancer appear to contain an oncogenic gene which resembles genetic sequences present in normal cells. This gene codes for a transforming protein which may be a normal cellular enzyme or a slightly altered cellular product. Its mechanism for transforming a cell is not yet known. Other oncogenic viruses, such as the chronic leukemia viruses, may not produce an oncogenic protein but may affect, by other means, specific target cells so they become malignant. Recent evidence now suggests that the majority of endogenous type C viruses are not transforming agents but inherited in the host to function in other biologic processes. These viruses do not contain transduced cellular genes which are responsible for cancer. Their role probably depends on their expression of other gene products which aid in normal development. These observations suggest that the ultimate control of human cancer may result from the identification of the oncogenic cellular-like genes transduced by some type C viruses even if a true human oncogenic virus is not isolated.  相似文献   

13.
14.
15.
16.
We describe here the construction of a family of expression vectors, based on the P2 promoter of the Escherichia coli rrnB gene by removing regulatory sequences downstream of the Pribnow-box and replacing them with the lac operator. These vectors allow cloning of foreign genes in such a way that their products are synthesized either in the form of fusion proteins of different length, or without fusion partners, with or without the original translational initiation signals. One of the vectors contains a synthetic oligothreonine-coding sequence that helps to stabilize the product of the cloned gene. These vectors allow high-level regulated expression of foreign genes, even if their products are relatively short peptides.  相似文献   

17.
The complete nucleotide sequence of an 8447 bp-long mercury-resistance transposon (Tn 5053 ) has been determined. Tn 5053 is composed of two modules: (i) the mercury-resistance module and (ii) the transposition module. The mercury-resistance module carries a mer operon, merRTPFAD , and appears to be a single-ended relic of a transposon closely related to the classical mercury-resistance transposons Tn 21 and Tn 501 . The transposition module of Tn 5053 is bounded by 25 bp terminal inverted repeats and contains four genes involved in transposition, i.e. tniA, tniB, tniQ , and tniR . Transposition of Tn 5053 occurs via cointegrate formation mediated by the products of the tniABQ genes, followed by site-specific cointegrate resolution. This is catalysed by the product of the tniR gene at the res region, which is located upstream of tniR . The same pathway of transposition is used by Tn 402 (Tn 5090 ) which carries the integron of R751. Transposition genes of Tn 5053 and Tn 402 are interchangeable. Sequence analysis suggests that Tn 5053 and Tn 402 are representatives of a new family of transposable elements, which fall into a recently recognized superfamily of transposons including retroviruses, insertion sequences of the IS 3 family, and transposons Tn 552 and Tn 7 . We suggest that the tni genes were involved in the dissemination of integrons.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号