首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The NADH-ubiquinone oxidoreductase complex (Complex I) and the ubiquinol-cytochrome c oxidoreductase complex (Complex III) combine in a 1:1 molar ratio to give NADH-cytochrome c oxidoreductase (Complex I-Complex III). 2. Experiments on the inhibition of the NADH-cytochrome c oxidoreductase activity of mixtures of Complexes I and III by rotenone and antimycin indicate that electron transfer between a unit of Complex I-Complex III and extra molecules of Complexes I or III does not contribute to the overall rate of cytochrome c reduction. 3. The reduction by NADH of the cytochrome b of mixtures of Complexes I and III is biphasic. The extents of the fast and slow phases of reduction are determined by the proportion of the total Complex III specifically associated with Complex I. 4. Activation-energy measurements suggest that the structural features of the Complex I-Complex III unit promote oxidoreduction of endogenous ubiquinone-10.  相似文献   

2.
1. The endogenous phosphatidylcholine and phosphatidylethanolamine of Complexes I and III from bovine heart mitochondria may be completely replaced with 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine with at least partial retention of activity. 2. The lipid-replaced enzymes associate in 1:1 molar ratio to give a Complex I--III unit catalysing NADH-cytochrome c oxidoreductase activity. 3. On increasing the concentration of ubiquinone-10 and the synthetic phospholipid, the lipid-replaced Complexes appear to operate independently of each other as in the natural membrane. Thus the lipid-replaced enzymes associate in exactly the same ways as the enzymes containing natural phospholipids. 4. Arrhenius plots of NADH--cytochrome c oxidoreductase activity reconstituted from lipid-replaced Complexes I and III exhibit changes in slope at 24 degrees C. When the concentrations of phospholipid and ubiquinone-10 are increased, the Arrhenius plots show discontinuities at 24 degrees C as well as changes in slope. 5. The kinetics of cytochrome b reduction by NADH were measured in mixtures containing 2 mol of Complex III/mol of Complex I. When the enzymes contained natural phospholipids. the reduction kinetics were biphasic. When the enzymes had been supplemented with further phospholipid and ubiquinone-10 the kinetics were monophasic. When lipid-replaced enzymes were supplemented with 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine and ubiquinone-10, reduction of cytochrome b was monophasic above the phase-transition temperature of the lipid but biphasic below it. 6. These findings are interpreted in terms of the model for the interaction of Complexes in the natural membrane proposed by Heron, Ragan & Trum-power [(1978) Biochem. J. 174, 791--800].  相似文献   

3.
After fusion of small unilamellar phospholipid liposomes with mitochondrial inner membranes, the rate of electron transfer between membrane dehydrogenases and cytochrome c decreases as the average distance between integral membrane proteins increases, suggesting that electron transfer is mediated through a diffusional process in the membrane plane (Schneider, H., Lemasters, J. J., H?chli, M., and Hackenbrock, C. R. (1980)., J. Biol. Chem. 255, 3748-3756). The role of ubiquinone in this process was evaluated by fusing liposomes containing ubiquinone-10 or ubiquinone-6, with inner membranes. In control membranes enriched with phospholipid only, ubiquinol-cytochrome c reductase and NADH- and succinate-cytochrome c reductase activities decreased proportionally to the increase in bilayer lipid. These decreases were restored substantially in phospholipid plus ubiquinone-supplemented membranes. The degree to which restoration occurred was dependent upon the length of the isoprenoid side chain of the ubiquinone with the shorter chain length ubiquinone-6, always giving greater restoration than ubiquinone-10. It is concluded that electron transfer between flavin-linked dehydrogenases (Complexes I and II) and cytochrome bc1 (Complex III) occurs by independent, lateral diffusion of ubiquinone as well as independent, lateral diffusion of ubiquinone as well as the protein complexes within the plane of the membrane.  相似文献   

4.
Purified L-3-glycerophosphate dehydrogenase from pig brain mitochondria interacts with ubiquinone-10 and ubiquinol-cytochrome c oxidoreductase (Complex III) from bovine heart mitochondria to reconstitute antimycin-sensitive L-3-glycerophosphate- cytochrome c oxidoreductase. This activity is completely dependent on the two enzymes and largely dependent on ubiquinone-10. Reconstitution requires that the two enzymes should be simultaneously present in the same membranous aggregate produced by removal of detergent from the enzymes. Reconstitution by removing detergent by dialysis or dilution is inefficient because of self-aggregation of the dehydrogenase. Highly efficient reconstitution can be achieved if the enzymes are co-precipitated by addition of ethanol. The rate with reconstituted enzyme approaches that expected from the turnover of the dehydrogenase with ubiquinone-1 as acceptor. The behaviour of the reconstituted system shows some of the characteristics expected for a stoicheiometric association of one molecule of dehydrogenase with one molecule of Complex III. On raising the phospholipid/protein ratio, the dehydrogenase and Complex III appear to operate as independent enzymes acting in sequence. These effects are very similar to those observed for the interaction of NADH dehydrogenase and Complex III and are explained in terms of the model proposed by Heron, Ragan & Trumpower [(1978) biochem. J. 174, 791-800].  相似文献   

5.
6.
NADH-ubiquinone oxidoreductase (Complex I) can be recombined with ubiquinol-cytochrome c oxidoreductase (Complex III) to reconstitute NADH-cytochrome c oxidoreductase. Two modes of interaction have been found. In one, the Complexes interact stoichiometrically in one to one molar ratios to give a binary Complex I-III unit. In the other, the kinetics of NADH-cytochrome c oxidoreductase are characteristic of 'Q-pool' behaviour seen in intact mitochondria and submitochondrial particles in which the Complexes need not interact directly but can do so via a pool of mobile ubiquinone. Stoichiometric behaviour is found when only boundary layer or annular lipid is present or the lipid is in the gel phase. The lipid is immobile on the ESR time scale and protein rotational diffusion, measured by saturation transfer ESR, is very slow. Q-pool behaviour is found when mobile extra-annular lipid phase is also present. Protein rotational diffusion is rapid and characteristic of a fully disaggregated state. We have also used freeze-fracture electron microscopy of reconstituted NADH-cytochrome c oxidoreductase to monitor protein aggregation and lateral phase separation of lipids and proteins under various conditions. We discuss our findings in relation to models for lateral interactions between respiratory chain enzymes.  相似文献   

7.
The mechanisms involved in ageing are yet to be fully understood but it is thought that changes produced in energy transfer pathways occurring in the mitochondria may be responsible for the lack of energy typical of the later stages of life. The aim of the present investigation was to determine the enzymatic activity of the liver NADH cytochrome c oxidorectuctase complex (Complex I-III) in mitochondria isolated from the liver of rats of 3 different age groups: lactating, animals (15-17 days), adult females (3-5 months) and old animals (26-30 months). The activities of the unbound Complexes I and III were also determined.An increase in Complex I-III activity was detected during development (142 ± 10 vs. 447 ± 23 mol cyt. c/mg/min, p < 0.001) ang ageing (447 ± 23 vs. 713 ± 45 mol cyt. c/mg//min, p < 0.001). However, unbound Complex I showed a reduction in activity during the ageing period whilst Complex III activity moderately increased. Immunological studies indicated only a moderate increase in the amount of Complex I-III and studies on the purified complex suggested that the increase in activity was due to effects other than an increase in enzyme quantity. The analysis of protein bands and the quantification of prosthetic groups showed particular reductions in the relative concentrations of Complex I subunits including the 51 kDa unit, which binds FMN, confirmed by a similar reduction in levels of the nucleotide. In contrast, 4 of the 5 subunits which increased during the lifetime of the animals corresponded to those of Complex III. These subunits are responsible for the binding of catalytic groups. The results suggest that, in addition to the increase in the amount of enzyme, binding factors between Complexes I and III may also play an important role in the observed increase in Complex I-III activity.  相似文献   

8.
The electron transfer from ubiquinol-2 to ferricytochrome c mediated by ubiquinol:cytochrome c oxidoreductase [E.C. 1.10.2.2] purified from beef heart mitochondria, which contained one equivalent of ubiquinone-10 (Q10), was investigated under initial steady-state conditions. The Q10-depleted enzyme was as active as the Q10-containing one. Double reciprocal plots for the initial steady-state rate versus one of the two substrates at various fixed levels of the other substrate gave parallel straight lines in the absence of any product. Intersecting straight lines were obtained in the presence of a constant level of one of the products, ferrocytochrome c. The other product, ubiquinone-2, did not show any significant effect on the enzymic reaction. Ferrocytochrome c non-competitively inhibited the enzymic reaction against either ubiquinol-2 or ferricytochrome c. These results indicate a Hexa-Uni ping-pong mechanism with one ubiquinol-2 and two ferricytochrome c molecules as the substrates, which involves the irreversible release of ubiquinone-2 as the first product and the irreversible isomerization between the release of the first ferrocytochrome c and the binding of the second ferricytochrome c. Considering the cyclic electron transfer reaction mechanism, this scheme suggests that the binding of quinone or quinol to the enzyme and electron transfer between the iron-sulfur center and cytochrome c1 are rigorously controlled by the electron distribution within the enzyme.  相似文献   

9.
Mitochondrial Complex I (NADH Coenzyme Q oxidoreductase) is the least understood of respiratory complexes. In this review we emphasize some novel findings on this enzyme that are of relevance to the pathogenesis of neurodegenerative diseases. Besides Coenzyme Q (CoQ), also oxygen may be an electron acceptor from the enzyme, with generation of superoxide radical in the mitochondrial matrix. The site of superoxide generation is debated: we present evidence based on the rational use of several inhibitors that the one-electron donor to oxygen is an iron-sulphur cluster, presumably N2. On this assumption we present a novel mechanism of electron transfer to the acceptor, CoQ. Strong evidence is accumulating that electron transfer from Complex I to Complex III via CoQ is not performed by operation of the CoQ pool but by direct channelling within a super-complex including Complex I, Complex III and bound CoQ. Besides structural evidence of a Complex I -Complex III aggregate obtained by native electrophoresis, we have obtained kinetic evidence based on metabolic flux analysis, demonstrating that Complexes I and III behave as an individual enzyme. Quantitative and qualitative changes of phospholipids, including peroxidation, may affect the supercomplex formation. Complex I is deeply involved in pathological changes, including neurodegeneration. Maternally inherited mutations in mitochondrial DNA genes encoding for Complex I subunits are at the basis of Leber's Hereditary Optic Neuropathy; a decrease of electron transfer in the complex, due to the mutations, is not sufficient per se to explain the clinical phenotype, and other factors including proton translocation and oxygen radical generation have been considered of importance. Complex I changes are also involved in more common neurological diseases of the adult and old ages. In this review we discuss Parkinson's disease, where the pathogenic involvement of Complex I is better understood; the accumulated evidence on the mode of action of Complex I inhibitors and their effect on oxygen radical generation is discussed in terms of the aetiology and pathogenesis of the disease.  相似文献   

10.
Mechanisms of mitochondrial superoxide formation remain poorly understood despite considerable medical interest in oxidative stress. Superoxide is produced from both Complexes I and III of the electron transport chain, and once in its anionic form it is too strongly charged to readily cross the inner mitochondrial membrane. Thus, superoxide production exhibits a distinct membrane sidedness or "topology." In the present work, using measurements of hydrogen peroxide (Amplex red) as well as superoxide (modified Cypridina luciferin analog and aconitase), we demonstrate that Complex I-dependent superoxide is exclusively released into the matrix and that no detectable levels escape from intact mitochondria. This finding fits well with the proposed site of electron leak at Complex I, namely the iron-sulfur clusters of the (matrix-protruding) hydrophilic arm. Our data on Complex III show direct extramitochondrial release of superoxide, but measurements of hydrogen peroxide production revealed that this could only account for approximately 50% of the total electron leak even in mitochondria lacking CuZn-superoxide dismutase. We posit that the remaining approximately 50% of the electron leak must be due to superoxide released to the matrix. Measurements of (mitochondrial matrix) aconitase inhibition, performed in the presence of exogenous superoxide dismutase and catalase, confirmed this hypothesis. Our data indicate that Complex III can release superoxide to both sides of the inner mitochondrial membrane. The locus of superoxide production in Complex III, the ubiquinol oxidation site, is situated immediately next to the intermembrane space. This explains extramitochondrial release of superoxide but raises the question of how superoxide could reach the matrix. We discuss two models explaining this result.  相似文献   

11.
In this review we examine early and recent evidence for an aggregated organization of the mitochondrial respiratory chain. Blue Native Electrophoresis suggests that in several types of mitochondria Complexes I, III and IV are aggregated as fixed supramolecular units having stoichiometric proportions of each individual complex. Kinetic evidence by flux control analysis agrees with this view, however the presence of Complex IV in bovine mitochondria cannot be demonstrated, presumably due to high levels of free Complex. Since most Coenzyme Q appears to be largely free in the lipid bilayer of the inner membrane, binding of Coenzyme Q molecules to the Complex I-III aggregate is forced by its dissociation equilibrium; furthermore free Coenzyme Q is required for succinate-supported respiration and reverse electron transfer. The advantage of the supercomplex organization is in a more efficient electron transfer by channelling of the redox intermediates and in the requirement of a supramolecular structure for the correct assembly of the individual complexes. Preliminary evidence suggests that dilution of the membrane proteins with extra phospholipids and lipid peroxidation may disrupt the supercomplex organization. This finding has pathophysiological implications, in view of the role of oxidative stress in the pathogenesis of many diseases.  相似文献   

12.
Mutations in the human TAZ gene are associated with Barth Syndrome, an often fatal X-linked disorder that presents with cardiomyopathy and neutropenia. The TAZ gene encodes Tafazzin, a putative phospholipid acyltranferase that is involved in the remodeling of cardiolipin, a phospholipid unique to the inner mitochondrial membrane. It has been shown that the disruption of the Tafazzin gene in yeast (Taz1) affects the assembly and stability of respiratory chain Complex IV and its supercomplex forms. However, the implications of these results for Barth Syndrome are restricted due to the additional presence of Complex I in humans that forms a supercomplex with Complexes III and IV. Here, we investigated the effects of Tafazzin, and hence cardiolipin deficiency in lymphoblasts from patients with Barth Syndrome, using blue-native polyacrylamide gel electrophoresis. Digitonin extraction revealed a more labile Complex I/III(2)/IV supercomplex in mitochondria from Barth Syndrome cells, with Complex IV dissociating more readily from the supercomplex. The interaction between Complexes I and III was also less stable, with decreased levels of the Complex I/III(2) supercomplex. Reduction of Complex I holoenzyme levels was observed also in the Barth Syndrome patients, with a corresponding decrease in steady-state subunit levels. We propose that the loss of mature cardiolipin species in Barth Syndrome results in unstable respiratory chain supercomplexes, thereby affecting Complex I biogenesis, respiratory activities and subsequent pathology.  相似文献   

13.
Complex I is the site for electrons entering the respiratory chain and therefore of prime importance for the conservation of cell energy. It is generally accepted that the complex I-catalysed oxidation of NADH by ubiquinone is coupled specifically to proton translocation across the membrane. In variance to this view, we show here that complex I of Klebsiella pneumoniae operates as a primary Na+ pump. Membranes from Klebsiella pneumoniae catalysed Na+-stimulated electron transfer from NADH or deaminoNADH to ubiquinone-1 (0.1-0.2 micromol min-1 mg-1). Upon NADH or deaminoNADH oxidation, Na+ ions were transported into the lumen of inverted membrane vesicles. Rate and extent of Na+ transport were significantly enhanced by the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP) to values of approximately 0.2 micromol min-1 mg-1 protein. This characterizes the responsible enzyme as a primary Na+ pump. The uptake of sodium ions was severely inhibited by the complex I-specific inhibitor rotenone with deaminoNADH or NADH as substrate. N-terminal amino acid sequence analyses of the partially purified Na+-stimulated NADH:ubiquinone oxidoreductase from K. pneumoniae revealed that two polypeptides were highly similar to the NuoF and NuoG subunits from the H+-translocating NADH:ubiquinone oxidoreductases from enterobacteria.  相似文献   

14.
Association of ferrochelatase with Complex I in bovine heart mitochondria   总被引:1,自引:0,他引:1  
The location of ferrochelatase in bovine heart mitochondria has been studied. When the mitochondria were fractionated into Complexes I, II and III, ferrochelatase activity was only found in Complex I. Complex I also showed heme synthesis from ferric ion in the presence of NADH as an electron donor. Immunoblot experiments confirmed the presence of ferrochelatase in Complex I, but not in Complexes II or III. Some phospholipids, including phosphatidylserine and cardiolipin, stimulated NADH-dependent heme synthesis from ferric ion. When purified ferrochelatase was incubated with the low molecular weight form of NADH dehydrogenase prepared from Complex I, heme synthesis from ferric ion occurred by the addition of NADH. FMN markedly elevated the synthesis. These results indicate that ferrous ion is produced by NADH oxidation in Complex I and is then utilized for heme synthesis by ferrochelatase.  相似文献   

15.
We studied the role of cytochrome c (CYTc), which mediates electron transfer between Complexes III and IV, in cellular events related with mitochondrial respiration, plant development and redox homeostasis. We analyzed single and double homozygous mutants in both CYTc-encoding genes from Arabidopsis: CYTC-1 and CYTC-2. While individual mutants were similar to wild-type, knock-out of both genes produced an arrest of embryo development, showing that CYTc function is essential at early stages of plant development. Mutants in which CYTc levels were extremely reduced respective to wild-type had smaller rosettes with a pronounced decrease in parenchymatic cell size and an overall delay in development. Mitochondria from these mutants had lower respiration rates and a relative increase in alternative respiration. Furthermore, the decrease in CYTc severely affected the activity and the amount of Complex IV, without affecting Complexes I and III. Reactive oxygen species levels were reduced in these mutants, which showed induction of genes encoding antioxidant enzymes. Ascorbic acid levels were not affected, suggesting that a small amount of CYTc is enough to support its normal synthesis. We postulate that, in addition to its role as an electron carrier between Complexes III and IV, CYTc influences Complex IV levels in plants, probably reflecting a role of this protein in Complex IV stability. This double function of CYTc most likely explains why it is essential for plant survival.  相似文献   

16.
The reduction of the following exogenous quinones by succinate and NADH was studied in mitochondria isolated from both wild type and ubiquinone (Q)-deficient strains of yeast: ubiquinone-0 (Q0), ubiquinone-1 (Q1), ubiquinone-2 (Q2), and its decyl analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), duroquinone (DQ), menadione (MQ), vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone), the plastoquinone analogue 2,3,6-trimethyl-1,4-benzoquinone (PQOc1), plastoquinone-2 (PQ2), and its decyl analogue (2,3-dimethyl-6-decyl-1,4-benzoquinone). Reduction of the small quinones DQ, Q0, Q1, and PQOc1 by NADH occurred in both wild type and Q-deficient mitochondria in a reaction inhibited more than 50% by myxothiazol and less than 20% by antimycin. The reduction of these small quinones by succinate also occurred in wild type mitochondria in a reaction inhibited more than 50% by antimycin but did not occur in Q-deficient mitochondria suggesting that endogenous Q6 is involved in their reduction. In addition, the inhibitory effects of antimycin and myxothiazol, specific inhibitors of the cytochrome b-c1 complex, on the reduction of these small quinones suggest the involvement of this complex in the electron transfer reaction. By contrast, the reduction of Q2 and DB by succinate was insensitive to inhibitors and by NADH was 20-30% inhibited by myxothiazol suggesting that these analogues are directly reduced by the primary dehydrogenases. The dependence of the sensitivity to the inhibitors on the substrate used suggests that succinate-ubiquinone oxidoreductase interacts specifically with center i (the antimycin-sensitive site) and NADH ubiquinone oxidoreductase preferentially with center o (the myxothiazol-sensitive site) of the cytochrome b-c1 complex. The NADH dehydrogenase involved in the myxothiazol-sensitive quinone reduction faces the matrix side of the inner membrane suggesting that center o may be localized within the membrane at a similar depth as center i.  相似文献   

17.
The mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is inhibited by N,N'-dicyclohexylcarbodiimide (DCCD), and this inhibition correlates with incorporation of radioactivity from [14C]DCCD into a Complex I subunit of Mr 29,000 (Yagi, T. (1987) Biochemistry 26, 2822-2828). Resolution of [14C]DCCD-labeled Complex I in the presence of NaClO4 showed that the labeled Mr 29,000 subunit was in the hydrophobic fraction of the enzyme. This fraction, which contains greater than 17 unlike polypeptides, was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the Mr 29,000 subunit, containing bound [14C]DCCD, was isolated and purified. The amino acid composition and partial sequence of this subunit corresponded to those predicted from the mitochondrial DNA for the product of the mtDNA gene designated ND-1. The identity of the Mr 29,000 subunit with the ND-1 gene product was further confirmed by immunoblotting and immunoprecipitation experiments, using the hydrophobic fraction of [14C]DCCD-labeled Complex I and antiserum to a C-terminal undecapeptide synthesized on the basis of the human mitochondrial ND-1 nucleotide sequence. Thus, it appears that the DCCD-binding subunits of the respiratory chain Complexes I, III, and IV and in certain organisms the DCCD-binding subunit of the ATP synthase complex (Complex V) are all mtDNA products.  相似文献   

18.
线粒体呼吸链膜蛋白复合体的结构   总被引:8,自引:0,他引:8  
线粒体作为真核细胞的重要“能量工厂”,是细胞进行呼吸作用的场所,呼吸作用包括柠檬酸循环和氧化磷酸化两个过程,其中氧化磷酸化过程的电子传递链(又称线粒体呼吸链)位于线粒体内膜上,由四个相对分子质量很大的跨膜蛋白复合体(Ⅰ、Ⅱ、Ⅲ、和Ⅳ)、介于Ⅰ/Ⅱ与Ⅲ之间的泛醌以及介于Ⅲ与Ⅳ之间的细胞色素c共同组成。线粒体呼吸链的功能是进行生物氧化,并与称之为复合物V的ATP合成酶(磷酸化过程)相偶联,共同完成氧化磷酸化过程,并生产能量分子ATP。线粒体呼吸链的结构生物学研究对于彻底了解电子传递和能量转化的机理是至关重要的,本文分别论述线粒体呼吸链复合体Ⅰ、Ⅱ、Ⅲ和Ⅳ的结构,并跟踪线粒体呼吸链超复合体的结构研究进展。  相似文献   

19.
Differences in oxidative metabolism between subsarcolemmal and interfibrillar heart mitochondria were investigated. Interfibrillar mitochondria oxidized substrates donating reducing equivalents at Complex I (NADH-CoQ reductase), Complex II (succinate-CoQ reductase), and Complex III (CoQH2-cytochrome c reductase) more rapidly than did subsarcolemmal mitochondria. There was no difference in oxidation of substrates entering the electron transport chain at Complex IV (cytochrome c oxidase). Differences expressed in normal-ionic-strength medium at Complexes II and III but not I were eliminated in low-ionic-strength medium. The concentrations of cytochromes and activities of NADH and cytochrome c oxidase were virtually the same in the two populations. In permeabilized mitochondria, activities of succinate-duroquinone and TMPD plus ascorbate oxidase were significantly lower in the subsarcolemmal mitochondria. Differences in membrane permeability between the populations were suggested by the greater permeability of subsarcolemmal mitochondria to exogenous NADH. The influence of isolation buffers and preparative procedures on the two classes of mitochondria were also examined. Characteristic biochemical and morphological properties of the two populations were unchanged by exposing each to the preparative procedure used to isolate the alternate population; the oxidative performance of the two populations cannot be equalized by experimental manipulation.  相似文献   

20.
The NADH:ubiquinone oxidoreductase (NDH-1 or Complex I) of Escherichia coli is a smaller version of the mitochondrial enzyme, being composed of 13 protein subunits in comparison to the 43 of bovine heart complex I. The bacterial NDH-1 from an NDH-2-deficient strain was purified using a combination of anion exchange chromatography and sucrose gradient centrifugation. All 13 different subunits were detected in the purified enzyme by either N-terminal sequencing or matrix-assisted laser desorption/ionization time-of-flight mass spectral analysis. In addition, some minor contaminants were observed and identified. The activity of the enzyme was studied and the effects of phospholipid and dodecyl maltoside were characterized. Kinetic analyses were performed for the enzyme in the native membrane as well as for the purified NDH-1, using ubiquinone-1, ubiquinone-2 or decylubiquinone as the electron acceptors. The purified enzyme exhibited between 1.5- and 4-fold increase in the apparent Km for these acceptors. Both ubiquinone-2 and decylubiquinone are good acceptors for this enzyme, while affinity of NDH-1 for ubiquinone-1 is clearly lower than for the other two, particularly in the purified state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号