首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A virus was detected in cells (designated CuVa) cultured from one laboratory colony of the biting midge, Culicoides variipennis. By electron microscopy (30 nm), nonenveloped, icosahedral virions arranged separately and in crystalline matrix arrays were seen in the cytoplasm but not in the nucleus of CuVa cells. Separation by 10% polyacrylamide gel electrophoresis revealed multiple bands of viral-induced double-stranded RNA. Inoculation of this virus onto different cell lines and intracranially into suckling mice revealed no detectable pathology. Immunoperoxidase staining using polyclonal antibody determined that the virus is infectious to toad cells, bovine endothelial cells, bovine kidney cells, mosquito cells, and cells (designated KC) initiated from another laboratory colony of C. variipennis. KC cells infected with this virus were coinfected with bluetongue virus with no decrease in bluetongue virus titer.  相似文献   

2.
1. Culicoides variipennis midges were fed on a blood meal containing bluetongue virus (BTV) serotype 11 (BTV-11) and on four subsequent non-infective blood meals at 4-day intervals. 2. Eggs were collected before each blood-feeding and reared to adults. 3. Progeny from each egg batch were incubated for 14 days (20 degrees C, 40-60% RH) before plaque assay. 4. Oocytes from several parent flies were sectioned for immunoelectron microscopy. 5. Thirty-two percent of the parent females tested by plaque assay were positive for BTV. 6. All 993 progeny flies were negative for BTV. 7. BTV antigen was dense in proteid yolk bodies and in the vitelline membrane of the developing oocytes.  相似文献   

3.
A temperature sensitive auxotroph of Escherichia coli K-12 requiring unsaturated fatty acids can grow normally at 28 degrees C, but requires an osmotic stabilizer such as a high amount of salt or sugar in the medium for the growth at 42 degrees C. Namely, the apparent osmotic stability of the cells at 28 degrees C and 42 degrees C is quite different. The osmotic properties of liposomes of the phospholipids extracted from these cells were investigated. The osmotically induced volume change of the multilamellar liposomes was examined by the turbidimetric method. The liposomes prepared from cells grown at 28 degrees C can swell and shrink under a wide range of hypo-and hypertonic conditions. However, those from cells grown at 42 degrees C could not swell under hypotonic conditions. These results exhibit a good correlation between the apparent osmotic stability of E. coli cells and the osmotic properties of the liposomes prepared from the extracted total phospholipids. To clarify the role of each phospholipid component, the osmotic properties of the liposomes reconstituted from the purified phospholipid species were further investigated. The results clearly showed that phosphatidylglycerol is the key factor that stabilizes the membranes of E. coli phospholipids against osmotic pressure.  相似文献   

4.
The ability of numerous diverse compounds and ions to cross the bacterial cytoplasmic membrane by diffusion and active transport is highly dependent on cytoplasmic membrane fluidity, which can be measured using fluorescent probes to estimate membrane polarization values. However, membrane polarization data are lacking for most bacterial species. The cytoplasmic membrane polarization values for Arthrobacter sp. ATCC 21908, Bacillus cereus NRC 3045, Pseudomonas fluorescens R2F, Pseudomonas putida NRC 2986 and Escherichia coli C600 bacterial cells were spectrofluorometrically measured over a temperature range from 10 to 50 degrees C, and in the absence and presence of 1 microg/ml tetracycline, using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) to obtain new information on their membrane fluidity. At an assay temperature of 10 degrees C, E. coli cells grown in the absence of tetracycline exhibited the highest cytoplasmic membrane polarization value (least fluid membrane) of 0.446, followed by values of 0.392, 0.371, 0.344 and 0.293, respectively, for B. cereus, Arthrobacter sp., P. fluorescens and P. putida. At an assay temperature of 30 degrees C, the polarization values ranged from 0.357 to 0.288 for cells grown in the absence of tetracycline, regardless of the species. B. cereus grown in the presence of 1 microg/ml tetracycline had lower polarization values than when grown in the absence of this antibiotic at all assay temperatures. Regardless of the absence or presence of 1 microg/ml tetracycline in the growth medium, all bacterial species generally exhibited a more fluid membrane as the assay temperature increased from 10 to 50 degrees C. To our knowledge, these are some of the first cytoplasmic membrane polarization values reported for these Gram-negative and Gram-positive bacteria over a broad temperature range and also for cells grown in the presence of tetracycline.  相似文献   

5.
Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa.   总被引:12,自引:5,他引:7  
Pseudomonas aeruginosa PAO grown in glucose mineral salts medium released lipopolysaccharide which was chemically and immunologically similar to the cellular lipopolysaccharide. In addition, it possessed identical phage E79-inactivating properties. Through neutralization of phage activity and hemolysis inhibition assays, the organism was found to liberate lipopolysaccharide at a constant rate during log-phase growth equivalent to 1.3 to 2.2 ng/10(8) cells over a growth temperature range of 25 to 42 degrees C. At 19 degrees C, a lipopolysaccharide was released which was deficient in phage-inactivating activity but retained its immunological properties. Chemical analysis of lipopolysaccharide extracted from cells grown at 19 degrees C showed a deficiency in the O-side-chain component fucosamine. Gel exclusion chromatography of the polysaccharide fraction derived from lipopolysaccharide isolated from cells grown at 19 degrees C exhibited a decreased content of side-chain polysaccharide as well as a difference in the hexosamine:hexose ratio. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis confirmed these results as well as establishing that an essentially normal distribution of side-chain repeating unit lengths were to be found in the 19 degrees C preparation. These results suggest a decrease in the frequency of capping R-form lipopolysaccharide at 19 degrees C.  相似文献   

6.
Saccharomyces cerevisiae was grown in a rich medium under the conditions of "quasi-continuous" cultivation and, after 200-300 generations, its diploid cells almost completely displaced haploid cells from the original mixed "haploid-diploid" population where the ratio between diploid and haploid strains was either 1:1 or 1:100. The cultivation at 40 degrees C did not change the relative competitive ability of haploids and diploids. When cells were cultivated in a rich medium at 6 degrees C or in a minimal medium at 30 degrees C, none of the strains showed an advantage over others for about 200 generations. Haploid cells had an advantage over diploid cells during "quasi-continuous" growth in the minimal medium at 30 degrees C. When the temperature was elevated to 40 degrees C, diploid cells displaced haploid cells from the mixed population. No advantage was found for diploid or haploid cells grown in a medium with an elevated KCl content (1.5 M). Haploid cells had an advantage over diploid cells when Pichia pinus was cultivated in a minimal medium. The results are discussed using the hypothesis about the diploid phase being fixed in the course of biological evolution.  相似文献   

7.
An extracellular lipase, LipA, extracted from Acinetobacter sp. RAG-1 grown on hexadecane was purified and properties of the enzyme investigated. The enzyme is released into the growth medium during the transition to stationary phase. The lipase was harvested from cells grown to stationary phase, and purified with 22% yield and > 10-fold purification. The protein demonstrates little affinity for anion exchange resins, with contaminating proteins removed by passing crude supernatants over a Mono Q column. The lipase was bound to a butyl Sepharose column and eluted in a Triton X-100 gradient. The molecular mass (33 kDa) was determined employing SDS/PAGE. LipA was found to be stable at pH 5.8-9.0, with optimal activity at 9.0. The lipase remained active at temperatures up to 70 degrees C, with maximal activity observed at 55 degrees C. LipA is active against a wide range of fatty acid esters of p-nitrophenyl, but preferentially attacks medium length acyl chains (C6, C8). The enzyme demonstrates hydrolytic activity in emulsions of both medium and long chain triglycerides, as demonstrated by zymogram analysis. RAG-1 lipase is stabilized by Ca2+, with no loss in activity observed in preparations containing the cation, compared to a 70% loss over 30 h without Ca2+. The lipase is strongly inhibited by EDTA, Hg2+, and Cu2+, but shows no loss in activity after incubation with other metals or inhibitors examined in this study. The protein retains more than 75% of its initial activity after exposure to organic solvents, but is rapidly deactivated by pyridine. RAG-1 lipase offers potential for use as a biocatalyst.  相似文献   

8.
Low-temperature growth of Shewanella oneidensis MR-1   总被引:1,自引:0,他引:1  
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of approximately 35 degrees C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature ( approximately 22 degrees C) MR-1 grows with a doubling time of about 40 min, but when moved from 22 degrees C to 3 degrees C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of approximately 67 h. In comparison to cells grown at 22 degrees C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22 degrees C.  相似文献   

9.
The specific activity of urease, nitrogenase, hialuronidase and neuraminidase in Y. pseudotuberculosis grown in different culture media and at different temperature has been studied. These enzymes have been found capable of functioning at both relatively low (2-8 degrees C) and high (37 degrees C) temperatures. The thermoadaptive properties of Y. pseudotuberculosis within a wide range of temperatures are ensured by the constant presence of isoenzymes, functioning only at low temperatures or only at high temperatures, in the microbial cells. Low temperature in combination with a definite culture medium triggers the activity of certain enzymatic systems, which explains, to some extent, the biochemical mechanisms of the psychrophilic properties of Y. pseudotuberculosis.  相似文献   

10.
11.
Mutations in two chromosomal genes of Escherichia coli, cpxA and cpxB, produced a temperature-sensitive growth defect that was remedied specifically by the addition of isoleucine and valine to the minimal medium. This auxotrophy was manifested only when the medium contained exogenous leucine, suggesting that mutant cells fail to elaborate active acetohydroxy acid synthase, isozyme I. In the presence of leucine, this enzyme was required to catalyze the first reaction common to the biosynthesis of isoleucine and valine. Measurements of enzyme activity in crude extracts showed that mutant cells were seven- to eightfold deficient in active isozyme I when the cells were grown in the presence of leucine. When grown in the absence of leucine, mutant cells contained more acetohydroxy acid synthase activity. We attribute this activity to isozyme III, the product of the ilvHI genes, which are derepressed in the absence of exogenous leucine. The cpxA and cpxB mutations appear to affect the production of active isozyme I, rather than its activity, since (i) neither the cpxA nor the cpxB gene mapped near the structural gene for isozyme I (ilvB), (ii) the growth of mutant cells shifted from the permissive (34 degrees C) to the nonpermissive (41 degrees C) temperature did not immediately cease, but declined gradually over a period corresponding to several normal generation times, and (iii) the enzyme from mutant cells grown at 34 degrees C was as stable at 41 degrees C as the enzyme from cpx+ cells.  相似文献   

12.
Staphylococcus aureus MF31 can grow at 46 degrees C, 2 degrees C above its normal maximum temperature of growth if 1 M NaCl is added to the medium. In the present work we show that monosodium glutamate, proline, threonine, aspartic acid, and betaine (in order of decreasing effectiveness) also enabled cells to grow at 46 degrees C. Cells grown at 46 degrees C in he presence of salt (protected or P cells) accumulated glutamate more rapidly than cells grown at 37 degrees C without salt (normal or N cells) and contained an increased amino acid pool. The principal constituents of this pool were dicarboxylic amino acids and proline. Turbidimetric evidence suggests that NaCl caused plasmolysis in S. aureus. The P cells, although grown in 1 M NaCl, had about the same Cl- and K+ content as the N cells grown without added NaCl. P cells had increased heat resistance but high concentrations of CaCl2 in the heating menstruum reduced their D55 value from a maximum of 214 min to less than 30 s. We suggest that growth at 46 degrees C in 1 M NaCl can be explained, in part at least, by the increased amino acid pool internal to the cell and the external osmotic support given by Cl- anions excluded by the cell.  相似文献   

13.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43 degrees C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20 degrees C, but in a liquid crystalline state when cells were grown at 37 and 43 degrees C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

14.
15.
Effect of Decreasing Growth Temperature on Cell Yield of Escherichia coli   总被引:5,自引:0,他引:5  
Studies of the relationship between yield coefficient and growth rate, as affected by temperature of growth, in Escherichia coli have shown that, over a wide range of temperature, yield is relatively constant until the specific growth rate falls below about 0.2 hr(-1), at which point the yield begins to fall off precipitously. No intermediates of glucose metabolism in a form utilizable at higher temperatures could be found in the medium, and no toxic product was produced which limited growth. At 10 C, 37% of the carbon from glucose-UL-(14)C was assimilated into cellular material, whereas, at 30 C, 53% was assimilated. Cells grown at 10 C contained more carbohydrate than did cells grown at 37 C, and the glycogen-to-protein ratio of cells grown at 10 C was approximately three times higher than that of cells grown at 37 C. Adenosine triphosphatase activities of cells grown at 10 and 35 C were similar. Growth rates on glucose, glycerol, and succinate were quite similar at 10 C, but at 35 C growth was most rapid on glucose and slowest on succinate. The data suggest that the decrease in yield with decrease in temperature is a result of uncoupling of energy production from energy utilization.  相似文献   

16.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   

17.
An anaerobic fungus (strain R1) resembling Neocallimastix spp. was isolated from sheep rumen. When grown on defined medium, the isolate utilized a wide range of polysaccharides and disaccharides, but of the eight monosaccharides tested only fructose, glucose, and xylose supported growth. The organism had doubling times of 5.56 h on glucose and 6.67 h on xylose, and in each case fermentation resulted in production of formate, acetate, lactate, and ethanol. During active growth, formate was a reliable indicator of fungal biomass. Growth on a medium containing glucose and xylose resulted in a doubling time of 8.70 h, but diauxic growth did not occur since both sugars were utilized simultaneously. The optimum temperature for zoospore and immature plant development was 39 degrees C, and no development occurred below 33 degrees C or above 41 degrees C.  相似文献   

18.
To make dihomo-gamma-linolenic acid (DGLA) (20:3n-6) in Saccharomyces cerevisiae, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase, rat Delta6 fatty acid desaturase, and rat elongase genes. Because Fad2p is able to convert the endogenous oleic acid to linoleic acid, this allowed DGLA biosynthesis without the need to supply exogenous fatty acids on the media. Medium composition, cultivation temperature, and incubation time were examined to improve the yield of DGLA. Fatty acid content was increased by changing the medium from a standard synthetic dropout medium to a nitrogen-limited minimal medium (NSD). Production of DGLA was higher in the cells grown at 15 degrees C than in those grown at 20 degrees C, and no DGLA production was observed in the cells grown at 30 degrees C. In NSD at 15 degrees C, fatty acid content increased up until day 7 and decreased after day 10. When the cells were grown in NSD for 7 days at 15 degrees C, the yield of DGLA reached 2.19 microg/mg of cells (dry weight) and the composition of DGLA to total fatty acids was 2.74%. To our knowledge, this is the first report describing the production of polyunsaturated fatty acids in S. cerevisiae without supplying the exogenous fatty acids.  相似文献   

19.
Lipid preparations from the cells of a moderately halophilic bacterium, Pseudomonas halosaccharolytica grown under the two extreme conditions of high temperature-high NaCl concentration and low temperature-low NaCl concentration showed distinctively different profiles in phospholipid and fatty acid composition. Cells grown at 40 degrees C in medium containing 3.5 M NaCl had high concentrations of saturated and C19 cyclopropanoic fatty acids (about 50 per cent of the total), whereas cells grown at 20 degrees C in medium containing 0.5 M NaCl had decreased concentrations of these fatty acids with increased concentrations of the corresponding unsaturated fatty acids. The phospholipid composition was also affected ty the culture conditions; cells grown at 40 degrees C in 3.5 M NaCl had large amounts of acidic phospholipids, whereas those grown at 20 degrees C in 0.5 M NaCl had small amounts. ESR studies on liposomes prepared from lipids of cells grown under the two conditions showed characteristic profiles for correlation times and order parameters of three spin labels of stearic acid derivatives similar to those of membranes of whole cells of this bacterium. ESR studies showed that the physical properties of the liposomes from the total extractable lipids and isolated phosphatidylglycerol from the cells were completely different from those of synthetic dioleoylphosphatidylglycerol. Liposomes of the lipids extracted from cells grown at 40 degrees C in 3.5 M NaCl showed change in rotational viscosity on altering the NaCl concentration to 0.5M, whereas liposomes of lipids extracted from cells grown at 20 degrees C in 0.5 M NaCl did not show change in rotational viscosity on increasing the NaCl concentration to 3.5 M.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号