首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch genes encode transmembrane receptors that interact with numerous signal transduction pathways and are essential for animal development. To facilitate analysis of vertebrate Notch gene function, we isolated cDNA fragments of three novel Notch genes from zebrafish (Danio rerio), Notch1b, Notch5 and Notch6. Notch1b is a second zebrafish Notch1 gene. From analysis of the Notch1b sequence we argue that the various vertebrate Notch gene subfamilies encode receptors with different signalling specificities. Notch5 and Notch6 represent novel vertebrate Notch gene subfamilies. Remarkably, Notch1b lacks expression in presomitic mesoderm, Notch5 is expressed in a metameric pattern within the presomitic mesoderm whilst Notch6 expression is excluded from the nervous system. The expression patterns of these genes suggest important roles in gastrulation, somitogenesis, tail bud extension, myogenesis, heart development and neurogenesis. We discuss the implications of our observations for Notch gene evolution and function. Received: 20 January 1997 / Accepted: 12 February 1997  相似文献   

2.
3.
Zhou L  Li-Ling J  Huang H  Ma F  Li Q 《Genomics》2008,91(2):129-141
Kininogens, the precursors of bradykinins, vary extremely in both structure and function among different taxa of animals, in particular between mammals and amphibians. This includes even the most conserved bradykinin domain in terms of biosynthesis mode and structure. To elucidate the evolutionary dynamics of kininogen genes, we have identified 19 novel amino acid sequences from EST and genomic databases (for mammals, birds, and fishes) and explored their phylogenetic relationships using combined amino acid sequence and gene structure as markers. Our results show that there were initially two paralogous kininogen genes in vertebrates. During their evolution, the original gene was saved with frequent multiplication in amphibians, but lost in fishes, birds, and mammals, while the novel gene was saved with multiple functions in fishes, birds, and mammals, but became a pseudogene in amphibians. We also propose that the defense mechanism against specific predators in amphibian skin secretions has been bradykinin receptor dependent. Our findings may provide a foundation for identification and structural, functional, and evolutionary analyses of more kininogen genes and other gene families.  相似文献   

4.
Teng H  Cai W  Zhou L  Zhang J  Liu Q  Wang Y  Dai W  Zhao M  Sun Z 《PloS one》2010,5(10):e13342

Background

Ionotropic glutamate receptors in the central nervous system play a major role in numerous brain functions including learning and memory in many vertebrate species. NR2 subunits have been regarded as rate-limiting molecules in controlling the optimal N-methyl-D-aspartate (NMDA) receptor''s coincidence-detection property and subsequent learning and memory function across multi-species. However, its evolutionary mode among vertebrate species remains unclear.

Results

With extensive analysis of phylogeny, exon structure, protein domain, paralogon and synteny, we demonstrated that two-round genome duplication generated quartet GRIN2 genes and the third-round fish-specific genome duplication generated extra copies of fish GRIN2 genes. In addition, in-depth investigation has enabled the identification of three novel genes, GRIN2C_Gg, GRIN2D-1_Ol and GRIN2D-2_Tr in the chicken, medaka and fugu genome, respectively. Furthermore, we showed functional divergence of NR2 genes mostly occurred at the first-round duplication, amino acid residues located at the N-terminal Lig_chan domain were responsible for type I functional divergence between these GRIN2 subfamilies and purifying selection has been the prominent natural pressure operating on these diversified GRIN2 genes.

Conclusion and Significance

These findings provide intriguing subjects for testing the 2R and 3R hypothesis and we expect it could provide new insights into the underlying evolution mechanisms of cognition in vertebrate.  相似文献   

5.
Notch signalling in vertebrate neural development   总被引:7,自引:0,他引:7  
Signals through the Notch receptors are used throughout development to control cellular fate choices. Loss- and gain-of-function studies revealed both the pleiotropic action of the Notch signalling pathway in development and the potential of Notch signals as tools to influence the developmental path of undifferentiated cells. As we review here, Notch signalling affects the development of the nervous system at many different levels. Understanding the complex genetic circuitry that allows Notch signals to affect specific cell fates in a context-specific manner defines the next challenge, especially as such an understanding might have important implications for regenerative medicine.  相似文献   

6.
The evolutionary history of muscle development in the paired fins of teleost fish and the limbs of tetrapod vertebrates is still, to a large extent, uncertain. There has been a consensus, however, that in the vertebrate clade the ancestral mechanism of fin and limb muscle development involves the extension of epithelial tissues from the somite into the fin/limb bud. This mechanism has been documented in chondrichthyan, dipnoan, chondrostean and teleost fishes. It has also been assumed that in amniotes, in contrast, individual progenitor cells of muscles migrate from the somites into the limb buds. Neyt et al. now present the exciting finding that in zebrafishes this presumably derived mechanism involving individual cell migration, is present. They conclude, based on data on sharks, zebrafishes, chickens, quails and mice that the derived mechanism was present in the sarcopterygians. This conclusion, however, may be premature in the light of further data available in the literature, which show a highly mosaic distribution of this character in the vertebrate clade. Furthermore, a developmental mode exists that is intermediate between the supposed ancestral and derived modes in teleosts, reptiles and possibly amphibians.  相似文献   

7.
《Epigenetics》2013,8(6):842-850
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.  相似文献   

8.
Sequence analysis of five of the six endopolygalacturonase-encoding genes ( Bcpg1 , Bcpg2 , Bcpg3 , Bcpg4 , Bcpg5 ) from 32 strains of Botrytis cinerea showed marked gene to gene differences in the amount of among-strains diversity. Bcpg4 was almost invariable in all strains; Bcpg3 and Bcpg5 showed a moderate variability, similar to that of non-pathogenicity-associated genes examined in other studies. Conversely, Bcpg1 and Bcpg2 were highly variable and were shown to be under positive selection based on the McDonald–Kreitman test and likelihood ratio test. The evolution of the five endopolygalacturonase genes is explained by their different ecophysiological role. Diversification and balancing selection, as detected in Bcpg1 and Bcpg2 , can be used by the pathogen to escape recognition by the host and delay plant reaction in the early phases of infection. The analysis of the polymorphisms and the location of the sites with high probability of being positively selected highlighted the relevance of variability of the BcPG1 and BcPG2 proteins at their C-terminal end. By contrast, the absence of variability in Bcpg4 suggests that the efficiency of the product of this gene is critical for B. cinerea growth in late phases of infection or during intraspecific competition, thus markedly affecting strain fitness.  相似文献   

9.
Evolutionary analysis of S-RNase genes from Rosaceae species   总被引:7,自引:0,他引:7  
Eight new cDNA sequences for S-RNases were cloned and analysed from almond (Prunus dulcis) cultivars of European origin, and compared to published sequences from other Rosaceae species. Insertions/deletions of 10-20 amino acid residues were detected in the RC4 and C5 domains of S-RNases from almond and sweet cherry. The S-RNases of the Prunus species and those of the genera Malus and Pyrus formed two distinct groups on phylogenetic analysis. Nucleotide substitutions were analysed in the S-RNase genes of these species. The S-genes of almond and sweet cherry have a lower Ka/Ks value than those of apple, pear and wild apple do. The fact that there is no fixed difference between the S-RNase genes of almond and sweet cherry, or between apple and pear, suggests that nucleotide substitutions only introduce transient polymorphism into the two groups, and rarely became fixed and contribute to divergence. Through the comparative study of 17 S-RNase genes from the genus Prunus and 18 from the genera Malus and Pyrus, some fixed nucleotide differences between the two groups were identified. These differences do not appear to be the result of selection for adaptive mutations, since the number of replacement substitutions is not significantly greater than the number of synonymous substitutions. S-RNase genes of almond and sweet cherry, and of apple and pear, showed little heterogeneity in nucleotide substitution rates. However, heterogeneity was observed between the two groups of S-alleles, with the Prunus alleles exhibiting a lower rate of non-synonymous substitutions than alleles from Malus and Pyrus. The evolutionary relationships between these species are discussed.  相似文献   

10.
11.
12.
Change in body mass with time has been considered for many clades, often with reference to Cope's rule, which predicts a tendency to increase in body size. A more general rule, namely increase in the range of body mass with time, is analyzed here for vertebrates. The log range of log vertebrate body mass is shown to increase linearly and highly significantly with the log of duration of clade existence. The resulting regression equations are used to predict the origin age, initial body mass, and subsequent dynamics of body mass range for primate clades such as the New World monkeys (Platyrrhini, 32 million years ago, initial mass of 1.7 kg) and the Anthropoidea (57 million years ago, initial mass of 0.12 kg), tested against the primate fossil record. Using these methods, other major primate clades such as Lemuriformes and Adapoidea are also estimated to have originated in the Tertiary (63 and 64 million years ago, respectively), with only the Plesiadapiformes originating in the Cretaceous (83 million years ago). Similarities of body mass range between primate and other vertebrate sister groups are discussed. Linear relationships of log range and log duration are considered with respect to Brownian processes, with the expected regression coefficients from the latter explored through simulations. The observed data produce regression coefficients that overlap with or are higher than those under Brownian processes. Overall, the analyses suggest the dynamics of vertebrate body mass range in morphologically disparate clades are highly predictable over many tens of million years and that the dynamics of phenotypic characteristics can assist molecular clock and fossil models in dating evolutionary events.  相似文献   

13.
Aguileta G  Bielawski JP  Yang Z 《Gene》2006,380(1):21-29
A comprehensive dataset of 62 beta globin gene sequences from various vertebrates was compiled to test the molecular clock and to estimate dates of gene duplications. We found that evolution of the beta globin family of genes is not clock-like, a result that is at odds with the common use of this family as an example of a constant rate of evolution over time. Divergence dates were estimated either with or without assuming the molecular clock, and both analyses produced similar date estimates, which are also in general agreement with estimates reported previously. In addition we report date estimates for seven previously unexamined duplication events within the beta globin family. Despite multiple sources of rate variation, the average rate across the beta globin phylogeny yielded reasonable estimates of divergence dates in most cases. Exceptions were cases of gene conversion, where it appears to have led to underestimates of divergence dates. Our results suggest (i) the major duplications giving rise to the paralogous beta globin genes are associated with significant evolutionary rate variation among gene lineages; and (ii) genes arising from more recent gene duplications (e.g., tandem duplications within lineages) do not appear to differ greatly in rate. We believe this pattern reflects a complex interplay of evolutionary forces where natural selection for diversifying paralogous functions and lineage-specific effects contribute to rate variation on a long-term basis, while gene conversion tends to increase sequence similarity. Gene conversion effects appear to be stronger on recent gene duplicates, as their sequences are highly similar. Lastly, phylogenetic analyses do not support a previous report that avian globins are members of a relic lineage of omega globins.  相似文献   

14.
In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense.  相似文献   

15.
16.

Background  

The mammalian neurohypophysial hormones, vasopressin and oxytocin are involved in osmoregulation and uterine smooth muscle contraction respectively. All jawed vertebrates contain at least one homolog each of vasopressin and oxytocin whereas jawless vertebrates contain a single neurohypophysial hormone called vasotocin. The vasopressin homolog in non-mammalian vertebrates is vasotocin; and the oxytocin homolog is mesotocin in non-eutherian tetrapods, mesotocin and [Phe2]mesotocin in lungfishes, and isotocin in ray-finned fishes. The genes encoding vasopressin and oxytocin genes are closely linked in the human and rodent genomes in a tail-to-tail orientation. In contrast, their pufferfish homologs (vasotocin and isotocin) are located on the same strand of DNA with isotocin gene located upstream of vasotocin gene separated by five genes, suggesting that this locus has experienced rearrangements in either mammalian or ray-finned fish lineage, or in both lineages. The coelacanths occupy a unique phylogenetic position close to the divergence of the mammalian and ray-finned fish lineages.  相似文献   

17.
The interaction between helix 3 and helix 5 in the human mineralocorticoid receptor [MR], progesterone receptor [PR] and glucocorticoid receptor [GR] influences their response to steroids. For the human PR, mutations at Gly-722 on helix 3 and Met-759 on helix 5 alter responses to progesterone. We analyzed the evolution of these two sites and the rest of a 59 residue segment containing helices 3, 4 and 5 in vertebrate PRs and found that a glycine corresponding to Gly-722 on helix 3 in human PR first appears in platypus, a monotreme. In lamprey, skates, fish, amphibians and birds, cysteine is found at this position in helix 3. This suggests that the cysteine to glycine replacement in helix 3 in the PR was important in the evolution of mammals. Interestingly, our analysis of the rest of the 59 residue segment finds 100% sequence conservation in almost all mammal PRs, substantial conservation in reptile and amphibian PRs and divergence of land vertebrate PR sequences from the fish PR sequences. The differences between fish and land vertebrate PRs may be important in the evolution of different biological progestins in fish and mammalian PR, as well as differences in susceptibility to environmental chemicals that disrupt PR-mediated physiology.  相似文献   

18.
Understanding why metazoan Hox/HOM-C genes are expressed in spatiotemporal sequences showing colinearity with their genomic sequence is a central challenge in developmental biology. Here, we studied the consequences of ectopically expressing Hox genes to investigate whether Hox-Hox interactions might help to order gene expression during very early vertebrate embryogenesis. Our study revealed conserved autoregulatory loops for the Hox4 and Hox7 paralogue groups, detected following ectopic expression Hoxb-4 or HOXD4, and Hoxa-7, respectively. We also detected specific induction of 5' posterior Hox genes; Hoxb-5 to Hoxb-9, following ectopic expression of Hoxb-4/HOXD4; Hoxb-8 and Hoxb-9 following ectopic expression of Hoxa-7. Additionally, we observed specific repression of 3' anterior genes, following ectopic expression of Hox4 and Hox7 paralogues. We found that induction of Hoxb-4 and Hoxb-5 by Hoxb-4 can be direct, whereas induction of Hoxb-7 is indirect, suggesting the possibility of an activating cascade. Finally, we found that activation of Hoxb-4 itself and of posterior Hox genes by Hoxb-4 can be both non-cell-autonomous, as well as direct. We believe that our findings could be important for understanding how a highly ordered Hox expression sequence is set up in the early vertebrate embryo.  相似文献   

19.
Homeobox genes in vertebrate evolution.   总被引:5,自引:0,他引:5  
A wide range of anatomical features are shared by all vertebrates, but absent in our closest invertebrate relatives. The origin of vertebrate embryogenesis must have involved the evolution of new regulatory pathways to control the development of new features, but how did this occur? Mutations affecting regulatory genes, including those containing homeobox sequences, may have been important: for example, perhaps gene duplications allowed recruitment of genes to new roles. Here I ask whether comparative data on the genomic organization and expression patterns of homeobox genes support this hypothesis. I propose a model in which duplications of particular homeobox genes, followed by the acquisition of gene-specific secondary expression domains, allowed the evolution of the neural crest, extensive organogenesis and craniofacial morphogenesis. Specific details of the model are amenable to testing by extension of this comparative approach to molecular embryology.  相似文献   

20.
Li M  Liu J  Zhang C 《PloS one》2011,6(10):e26999

Background

The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.

Methodology/Principal Findings

The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.

Conclusions/Significance

These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号