首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.

Background, aim, and scope

Many studies evaluate the results of applying different life cycle impact assessment (LCIA) methods to the same life cycle inventory (LCI) data and demonstrate that the assessment results would be different with different LICA methods used. Although the importance of uncertainty is recognized, most studies focus on individual stages of LCA, such as LCI and normalization and weighting stages of LCIA. However, an important question has not been answered in previous studies: Which part of the LCA processes will lead to the primary uncertainty? The understanding of the uncertainty contributions of each of the LCA components will facilitate the improvement of the credibility of LCA.

Methodology

A methodology is proposed to systematically analyze the uncertainties involved in the entire procedure of LCA. The Monte Carlo simulation is used to analyze the uncertainties associated with LCI, LCIA, and the normalization and weighting processes. Five LCIA methods are considered in this study, i.e., Eco-indicator 99, EDIP, EPS, IMPACT 2002+, and LIME. The uncertainty of the environmental performance for individual impact categories (e.g., global warming, ecotoxicity, acidification, eutrophication, photochemical smog, human health) is also calculated and compared. The LCA of municipal solid waste management strategies in Taiwan is used as a case study to illustrate the proposed methodology.

Results

The primary uncertainty source in the case study is the LCI stage under a given LCIA method. In comparison with various LCIA methods, EDIP has the highest uncertainty and Eco-indicator 99 the lowest uncertainty. Setting aside the uncertainty caused by LCI, the weighting step has higher uncertainty than the normalization step when Eco-indicator 99 is used. Comparing the uncertainty of various impact categories, the lowest is global warming, followed by eutrophication. Ecotoxicity, human health, and photochemical smog have higher uncertainty.

Discussion

In this case study of municipal waste management, it is confirmed that different LCIA methods would generate different assessment results. In other words, selection of LCIA methods is an important source of uncertainty. In this study, the impacts of human health, ecotoxicity, and photochemical smog can vary a lot when the uncertainties of LCI and LCIA procedures are considered. For the purpose of reducing the errors of impact estimation because of geographic differences, it is important to determine whether and which modifications of assessment of impact categories based on local conditions are necessary.

Conclusions

This study develops a methodology of systematically evaluating the uncertainties involved in the entire LCA procedure to identify the contributions of different assessment stages to the overall uncertainty. Which modifications of the assessment of impact categories are needed can be determined based on the comparison of uncertainty of impact categories.

Recommendations and perspectives

Such an assessment of the system uncertainty of LCA will facilitate the improvement of LCA. If the main source of uncertainty is the LCI stage, the researchers should focus on the data quality of the LCI data. If the primary source of uncertainty is the LCIA stage, direct application of LCIA to non-LCIA software developing nations should be avoided.  相似文献   

2.

Purpose

Weighting in Life Cycle Assessment (LCA) is a much-debated topic. Various tools have been used for weighting in LCA, Multi-Criteria Decision Analysis (MCDA) being one of the most common. However, it has not been thoroughly assessed how weight elicitation techniques of MCDA with different scales (interval and ratio) along with external and internal normalisation affect weighting and subsequent results. The aim of this survey is to compare different techniques in an illustrative example in the building sector.

Methods

A panel of Nordic LCA experts accomplished six weighting exercises. The different weight elicitation techniques are SWING which is based on the interval scale; Simple Multi-Attribute Rating Technique (SMART) and Analytic Hierarchy Process (AHP) which is based on the ratio scale. Information on the case study was provided for the panellists, along with characterised or normalised impact assessment scores. However, in the first weighting exercise, the panellists were not provided with any scores or background information, but they had to complete the weighting at a more general level. With the weights provided by the panel, the environmental impacts of three alternative house types were aggregated. The calculations were based on three well-grounded aggregation rules, which are commonly used in the field of LCA or decision analysis.

Results and discussion

In the illustrative construction example, the different aggregation rules had the biggest impact on the results. The results were different in the six calculation methods: when externally normalised scores were applied, house type A was superior in most of the calculations, but when internal normalisation was accomplished, house type C was superior. By using equal weights, similar results were obtained. None of the panellists intuitively considered A as the superior house type, but in some of the calculations, this was indeed the case. Furthermore, the results refer to the fact that the panellists completed the weighting on the basis of their general knowledge, without taking the features of different weight elicitation techniques into account.

Conclusions

External normalisation provides information on a magnitude of impacts, and in some cases, external normalisation may be a more influential factor than weighting. Based on the results, it cannot be stated which different weight elicitation technique is the most suitable for LCA. However, the method should be selected based on the aims and purpose of the study. Moreover, the elicitation questions should be explained with care to experts so that they interpret the questions as intended.  相似文献   

3.

Purpose

Building on the rhetoric question “quo vadis?” (literally “Where are you going?”), this article critically investigates the state of the art of normalisation and weighting approaches within life cycle assessment. It aims at identifying purposes, current practises, pros and cons, as well as research gaps in normalisation and weighting. Based on this information, the article wants to provide guidance to developers and practitioners. The underlying work was conducted under the umbrella of the UNEP-SETAC Life Cycle Initiative, Task Force on Cross-Cutting issues in life cycle impact assessment (LCIA).

Methods

The empirical work consisted in (i) an online survey to investigate the perception of the LCA community regarding the scientific quality and current practice concerning normalisation and weighting; (ii) a classification followed by systematic expert-based assessment of existing methods for normalisation and weighting according to a set of five criteria: scientific robustness, documentation, coverage, uncertainty and complexity.

Results and discussion

The survey results showed that normalised results and weighting scores are perceived as relevant for decision-making, but further development is needed to improve uncertainty and robustness. The classification and systematic assessment of methods allowed for the identification of specific advantages and limitations.

Conclusions

Based on the results, recommendations are provided to practitioners that desire to apply normalisation and weighting as well as to developers of the underlying methods.
  相似文献   

4.

Purpose

Identification of environmentally preferable alternatives in a comparative life cycle assessment (LCA) can be challenging in the presence of multiple incommensurate indicators. To make the problem more manageable, some LCA practitioners apply external normalization to find those indicators that contribute the most to their respective environmental impact categories. However, in some cases, these results can be entirely driven by the normalization reference, rather than the comparative performance of the alternatives. This study evaluates the influence of normalization methods on interpretation of comparative LCA to facilitate the use of LCA in decision-driven applications and inform LCA practitioners of latent systematic biases. An alternative method based on significance of mutual differences is proposed instead.

Methods

This paper performs a systematic evaluation of external normalization and describes an alternative called the overlap area approach for the purpose of identifying relevant issues in a comparative LCA. The overlap area approach utilizes the probability distributions of characterized results to assess significant differences. This study evaluates the effects in three LCIA methods, through application of four comparative studies. For each application, we call attention to the category indicators highlighted by each interpretation approach.

Results and discussion

External normalization in the three LCIA methods suffers from a systematic bias that emphasizes the same impact categories regardless of the application. Consequently, comparative LCA studies that employ external normalization to guide a selection may result in recommendations dominated entirely by the normalization reference and insensitive to data uncertainty. Conversely, evaluation of mutual differences via the overlap area calls attention to the impact categories with the most significant differences between alternatives. The overlap area approach does not show a systematic bias across LCA applications because it does not depend on external references and it is sensitive to changes in uncertainty. Thus, decisions based on the overlap area approach will draw attention to tradeoffs between alternatives, highlight the role of stakeholder weights, and generate assessments that are responsive to uncertainty.

Conclusions

The solution to the issues of external normalization in comparative LCAs proposed in this study call for an entirely different algorithm capable of evaluating mutual differences and integrating uncertainty in the results.
  相似文献   

5.

Purpose

Uncertainty is present in many forms in life cycle assessment (LCA). However, little attention has been paid to analyze the variability that methodological choices have on LCA outcomes. To address this variability, common practice is to conduct a sensitivity analysis, which is sometimes treated only at a qualitative level. Hence, the purpose of this paper was to evaluate the uncertainty and the sensitivity in the LCA of swine production due to two methodological choices: the allocation approach and the life cycle impact assessment (LCIA) method.

Methods

We used a comparative case study of swine production to address uncertainty due to methodological choices. First, scenario variation through a sensitivity analysis of the approaches used to address the multi-functionality problem was conducted for the main processes of the system product, followed by an impact assessment using five LCIA methods at the midpoint level. The results from the sensitivity analysis were used to generate 10,000 independent simulations using the Monte Carlo method and then compared using comparison indicators in histogram graphics.

Results and discussion

Regardless of the differences between the absolute values of the LCA obtained due to the allocation approach and LCIA methods used, the overall ranking of scenarios did not change. The use of the substitution method to address the multi-functional processes in swine production showed the highest values for almost all of the impact categories, except for freshwater ecotoxicity; therefore, this method introduced the greater variations into our analysis. Regarding the variation of the LCIA method, for acidification, eutrophication, and freshwater ecotoxicity, the results were very sensitive. The uncertainty analysis with the Monte Carlo simulations showed a wide range of results and an almost equal probability of all the scenarios be the preferable option to decrease the impacts on acidification, eutrophication, and freshwater ecotoxicity. Considering the aggregate result variation across allocation approaches and LCIA methods, the uncertainty is too high to identify a statistically significant alternative.

Conclusions

The uncertainty analysis showed that performing only a sensitivity analysis could mislead the decision-maker with respect to LCA results; our analysis with the Monte Carlo simulation indicates no significant difference between the alternatives compared. Although the uncertainty in the LCA outcomes could not be decreased due to the wide range of possible results, to some extent, the uncertainty analysis can lead to a less uncertain decision-making by demonstrating the uncertainties between the compared alternatives.
  相似文献   

6.

Purpose

The objective of the paper is to discuss the role of a new guidance document for life cycle assessment (LCA) in the construction sector available as an online InfoHub.

Methods

This InfoHub derives from the EeBGuide European project that aimed at developing a guidance document for energy-efficient building LCA studies. The InfoHub is built on reference documents such as the ISO 14040-44 standards, the EN 15804 and EN 15978 standards as well as the ILCD Handbook. The guidance document was filled with expertise and knowledge of several experts. The focus was put on providing scientifically sound, yet practical guidance.

Results

The EeBGuide InfoHub is an online guidance document, setting rules for conducting LCA studies and giving instructions on how to do this. The document has a section on buildings—new and existing—and a section on construction products. It is structured according to the life cycle stages of the European standards EN 15804 and EN 15978, covering all aspects of LCA studies by applying provisions from these standards and the ILCD handbook, wherever applicable. The guidance is presented for different scopes of studies by means of three study types. For the same system boundaries, default values are proposed in early or quick assessment (screening and simplified LCA) while detailed calculation rules correspond to a complete LCA. Such approach is intended to better match the user needs in the building sector.

Conclusions and recommendations

This paper can be viewed as a contribution to the ongoing efforts to improve the consistency and harmonisation in LCA studies for building products and buildings. Further contributions are now needed to improve building LCA guidance and to strengthen links between research, standardisation and implementation of LCA in the construction practice.  相似文献   

7.
8.
9.

Purpose

Life cycle assessment (LCA) has been increasingly implemented in analyzing the environmental performance of buildings and construction projects. To assess the life cycle environmental performance, decision-makers may adopt the two life cycle impact assessment (LCIA) approaches, namely the midpoint and endpoint models. Any imprudent usage of the two approaches may affect the assessment results and thus lead to misleading findings. ReCiPe, a well-known work, includes a package of LCIA methods to provide assessments on both midpoint and endpoint levels. This study compares different potential LCIA results using the midpoint and endpoint approaches of ReCiPe based on the assessment of a commercial building in Hong Kong.

Methods

This paper examines 23 materials accounting for over 99 % of the environmental impacts of all the materials consumed in commercial buildings in Hong Kong. The midpoint and endpoint results are compared at the normalization level. A commercial building in Hong Kong is further studied to provide insights as a real case study. The ranking of impact categories and the contributions from various construction materials are examined for the commercial building. Influence due to the weighting factors is discussed.

Results and discussion

Normalization results of individual impact categories of the midpoint and endpoint approaches are consistent for the selected construction materials. The difference in the two approaches can be detected when several impact categories are considered. The ranking of materials is slightly different under the two approaches. The ranking of impact categories demonstrates completely different features. In the case study of a commercial building in Hong Kong, the contributions from subprocesses are different at the midpoint and endpoint. The weighting factors can determine not only the contributions of the damage categories to the total environment, but also the value of a single score.

Conclusions

In this research, the midpoint and endpoint approaches are compared using ReCiPe. Information is whittled down from the inventories to a single score. Midpoint results are comprehensive while endpoint results are concise. The endpoint approach which provides additional information of damage should be used as a supplementary to the midpoint model. When endpoint results are asked for, a LCIA method like ReCiPe that provides both the midpoint and endpoint analysis is recommended. This study can assist LCA designers to interpret the midpoint and endpoint results, in particular, for the assessment of commercial buildings in Hong Kong.  相似文献   

10.

Purpose

While carbon dioxide capture and storage (CCS) has been widely recognized as a useful technology for mitigating greenhouse gas emissions, it is necessary to evaluate the environmental performance of CCS from a full life cycle perspective to comprehensively understand its environmental impacts. The primary research objective is to conduct a study on life cycle assessment of the post-combustion carbon dioxide capture process based on data from SaskPower’s electricity generation station at the Boundary Dam in Saskatchewan, Canada. A secondary objective of this study is to identify the life cycle impact assessment (LCIA) methodology which is most suitable for the assessment of carbon dioxide capture technology integrated with the power generation system in the Canadian context.

Methods

The study takes a comparative approach by including three scenarios of carbon dioxide capture at the electricity generation station: no carbon dioxide capture (“no capture”), partial capture (“retrofit”), and fully integrated carbon dioxide capture of the entire facility (“capture”). The four LCIA methods of EDIP 97, CML2001, IMPACT2002+, and TRACI are used to convert existing inventory data into environmental impacts. The LCIA results from the four methods are compared and interpreted based on midpoint categories.

Results and discussion

The LCA results showed an increase in the retrofit and capture scenarios compared to the no capture scenario in the impact categories of eutrophication air, ecotoxicity water, ecotoxicity ground surface soil, eutrophication water, human health cancer ground surface soil, human health cancer water, human health noncancer ground surface soil, ozone depletion air, human health noncancer water, and ionizing radiation. The reductions were observed in the retrofit and capture scenarios in the impact categories of acidification, human health criteria air-point source, human health noncancer air, ecotoxicity air, global warming, human health cancer air, and respiratory effects.

Conclusions

Although the four LCIA methodologies significantly differ in terms of reference substances used for individual impact categories, all (TRACI, IMPACT2002+, CML2001, and EDIP 97) showed similar results in all impact categories.  相似文献   

11.

Background

The editor of this journal has been waiting for such a contribution of the life cycle assessment (LCA) practitioners and users for years, since the last debate of this kind dates back to beginning of the new century. It is remembered as the “Two planets debate” and coincided with the emergence of life cycle management, i.e. the use of life-cycle based methods in industry.

The “Two planets”

This is a metaphor coined at the Society of Environmental Toxicology and Chemistry (SETAC) Europe case studies symposium 2000 and designates the fact that many academic LCA developers and the LCA practitioners seem to live in different spheres. The editorial note by Baitz et al. shows that this seems to be true still today. It is argued that the practitioners do not frequently enough participate in the working groups organized by SETAC, the UNEP/SETAC life cycle initiative and other international organizations and therefore cannot bring in the practical experience they have acquired in performing “real-life” LCA studies. The new LCIA methods, for instance, are often not accepted by the LCA practitioners and commissioners, since essential aspects were not recognised during method development.

Tentative proposal for a solution

The solution of the problems pointed out in Baitz et al. cannot be to hinder the inhabitants of the academic planet in inventing ingenious new methods for reasons of academic freedom. It is proposed that new methods developed should be tested by practitioners in real-life LCA studies. Data asymmetries in comparative (i.e. most) LCA studies using more demanding methods may shift problems from LCIA to the LCI databases. With regard to the financing of such studies, it should be remembered that practitioners do their living by performing LCAs and other studies and have to calculate a full overhead in addition to the pure working costs.  相似文献   

12.
13.

Purpose

Life cycle assessment (LCA) is a useful tool for quantifying the overall environmental impacts of a product, process, or service. The scientific scope and boundary definition are important to ensure the accuracy of LCA results. Defining the boundary in LCA is difficult and there are no commonly accepted scientific methods yet. The objective of this research is to present a comprehensive discussion of system boundaries in LCA and to develop an appropriate boundary delimitation method.

Methods

A product system is partitioned into the primary system and interrelated subsystems. The hierarchical relationship of flow and process is clarified by introducing flow- and process-related interventions. A system boundary curve model of the LCA is developed and the threshold rules for judging whether the system boundary satisfies the research requirement are proposed. Quantitative criteria from environmental, technical, geographical and temporal dimensions are presented to limit the boundaries of LCA. An algorithm is developed to identify an appropriate boundary by searching the process tree and evaluating the environmental impact contribution of each process while it is added into the studied system.

Results and discussion

The difference between a limited system and a theoretically complete system is presented. A case study is conducted on a color TV set to demonstrate and validate the method of boundary identification. The results showed that the overall environmental impact indicator exhibits a slow growth after a certain number of processes considered, and the gradient of the fitting curve trends to zero gradually. According to the threshold rules, a relatively accurate system boundary could be obtained.

Conclusions

It is found from this research that the system boundary curve describes the growth of life cycle impact assessment (LCIA) results as processes are added. The two threshold rules and identification methods presented can be used to identify system boundary of LCA. The case study demonstrated that the methodology presented in this paper is an effective tool for the boundary identification.  相似文献   

14.
Ecodesign of PVC packing tape using life cycle assessment   总被引:1,自引:0,他引:1  

Purpose

Polymer materials play an important role in the improvement and quality of life. However, due to their persistence in the environment, polymer materials may be harmful to the ecosystems. According to the European Directive on Packaging and Packaging Waste, management of these wastes should include prevention of their generation as a priority. The main motivation for employing ecodesign of a product is to reduce both raw material consumption and waste generation through a good initial design.

Methods

In this study, life cycle assessment (LCA) was applied to the design of printed PVC plastic packing tape in order to reduce its environmental impact. LCA software GaBi4.4® was used to determine the PVC packing tape life cycle stage with the highest environmental impacts.

Results and discussion

LCA results showed that PVC film manufacture was the stage with the highest impact. It was therefore reasonable to assume that packing tape manufactured with material other than PVC could have reduced environmental impact, and LCA was used to evaluate this hypothesis. When using Kraft paper or polypropylene plastic packing tape, the weighted impacts were reduced by 36.3 and 39.9 %, respectively.

Conclusions

PVC plastic packing tape has been redesigned with the aim of reducing waste and raw material consumption. LCA results showed that a suitable option for reducing life cycle environmental impact is to use alternative film materials. Kraft paper and polypropylene plastic packing tape were found to give lower values of almost all environmental impact indexes and normalized and weighted impacts.  相似文献   

15.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.016

Goal, Scope and Background

Although both cost-benefit analysis (CBA) and life cycle assessment (LCA) have developed from engineering practice, and have the same objective of a holistic ex-ante assessment of human activities, the techniques have until recently developed in relative isolation. This has resulted in a situation where much can be gained from an integration of the strong aspects of each technique. Such integration is now being prompted by the more widespread use of both CBA and LCA on the global arena, where also the issues of social responsibility are now in focus. Increasing availability of data on both biophysical and social impacts now allow the development of a truly holistic, quantitative environmental assessment technique that integrates economic, biophysical and social impact pathways in a structured and consistent way. The concept of impact pathways, linking biophysical and economic inventory results via midpoint impact indicators to final damage indicators, is well described in the LCA and CBA literature. Therefore, this paper places specific emphasis on how social aspects can be integrated in LCA.

Methods

and Results. With a starting point in the conceptual structure and approach of life cycle impact assessment (LCIA), as developed by Helias Udo de Haes and the SETAC/UNEP Life Cycle Initiative, the paper identifies six damage categories under the general heading of human life and well-being. The paper proposes a comprehensive set of indicators, with units of measurement, and a first estimate of global normalisation values, based on incidence or prevalence data from statistical sources and severity scores from health state analogues. Examples are provided of impact chains linking social inventory indicators to impacts on both human well-being and productivity.

Recommendation and Perspective

It is suggested that human well-being measured in QALYs (Quality Adjusted Life Years) may provide an attractive single-score alternative to direct monetarisation.
  相似文献   

16.

Purpose

With an ever increasing list of indicators available, life cycle assessment (LCA) practitioners face the challenge of effectively communicating results to decision makers. Simplification of LCA is often limited to an arbitrary selection of indicators, use of single scores by using weighted values or single attribute indicators. These solutions are less attractive to decision makers, since value judgments are introduced or multi-indicator information is lost. Normalization could be a means to narrow the list of indicators by ranking indicators vs. a reference system. This paper shows three different normalization approaches that produce very different ranking of indicators. It is explained how normalization helps maintain a multi-indicator approach while keeping the most relevant indicators, allowing effective decision making.

Methods

The approaches are illustrated on a hand dishwashing case study, using ReCiPe as the impact assessment method and taking the European population (year 2000) as the reference situation. Indicators are ranked using midpoint normalization factors, and compared to the ranking from endpoint normalization broken down by midpoint contribution.

Results and discussion

Endpoint normalization shows Resources as the most relevant area of protection for this case, closely followed by Human Health and Ecosystem. Broken down by their key driving midpoints, fossil depletion, climate change and, to a lesser extent, particulate matter formation and metal depletion, are most relevant. Midpoint normalization, however, indicates Freshwater Eutrophication, Natural Land Transformation and Toxicity indicators (marine and freshwater ecotoxicity and human toxicity) are most relevant.

Conclusions

A three-step approach based on endpoint normalization is recommended to present only the most relevant indicators, allowing more effective decision making instead of communicating all LCA indicators. The selection process breaks out the normalized endpoint results into the most contributing midpoints (relevant indicators) and reports results with midpoint level units. Bias due to lack of data completeness is less of an issue in the endpoint normalization process (compared to midpoint normalization), while midpoint results are less subject to uncertainty (compared to endpoint results). Focusing on the relevant indicators and key contributing unit processes has proven to be effective for non-LCA expert decision makers to understand, use, and communicate complex LCA results.  相似文献   

17.

Purpose

This study assesses the impacts of three different disinfection processes of sewage effluent, namely the electron beam (E-beam), ultraviolet (UV), and ozone systems, on the environment by using life cycle assessment (LCA).

Methods

The LCA employed was the comparative LCA which consists of three parts according to life cycle stages. Electricity consumption was the reference flow that can yield 99% disinfection efficiency for microorganisms present in a 1?×?105?m3?day?1 sewage treatment plant effluent over 20?years.

Results

The comparison of the LCA results indicated that the environmental impact of the UV disinfection system was the lowest, followed by the E-beam and ozone disinfection systems. The key issues of the E-beam, UV, and ozone disinfection systems are electricity consumption and SF6 usage, electricity consumption and UV lamp, and electricity consumption and liquid oxygen feeding system, respectively.

Conclusions

Electricity consumption is the key input parameter that determines the LCA results.  相似文献   

18.

Purpose

The main objective of this study is to expand the discussion about how, and to what extent, the environmental performance is affected by the use of different life cycle impact assessment (LCIA) illustrated by the case study of the comparison between environmental impacts of gasoline and ethanol form sugarcane in Brazil.

Methods

The following LCIA methods have been considered in the evaluation: CML 2001, Impact 2002+, EDIP 2003, Eco-indicator 99, TRACI 2, ReCiPe, and Ecological Scarcity 2006. Energy allocation was used to split the environmental burdens between ethanol and surplus electricity generated at the sugarcane mill. The phases of feedstock and (bio)fuel production, distribution, and use are included in system boundaries.

Results and discussion

At the midpoint level, comparison of different LCIA methods showed that ethanol presents lower impacts than gasoline in important categories such as global warming, fossil depletion, and ozone layer depletion. However, ethanol presents higher impacts in acidification, eutrophication, photochemical oxidation, and agricultural land use categories. Regarding to single-score indicators, ethanol presented better performance than gasoline using ReCiPe Endpoint LCIA method. Using IMPACT 2002+, Eco-indicator 99, and Ecological Scarcity 2006, higher scores are verified for ethanol, mainly due to the impacts related to particulate emissions and land use impacts.

Conclusions

Although there is a relative agreement on the results regarding equivalent environmental impact categories using different LCIA methods at midpoint level, when single-score indicators are considered, use of different LCIA methods lead to different conclusions. Single-score results also limit the interpretability at endpoint level, as a consequence of small contributions of relevant environmental impact categories weighted in a single-score indicator.  相似文献   

19.

Purpose

In this paper, we summarize the discussion and present the findings of an expert group effort under the umbrella of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative proposing natural resources as an Area of Protection (AoP) in Life Cycle Impact Assessment (LCIA).

Methods

As a first step, natural resources have been defined for the LCA context with reference to the overall UNEP/SETAC Life Cycle Impact Assessment (LCIA) framework. Second, existing LCIA methods have been reviewed and discussed. The reviewed methods have been evaluated according to the considered type of natural resources and their underlying principles followed (use-to-availability ratios, backup technology approaches, or thermodynamic accounting methods).

Results and discussion

There is currently no single LCIA method available that addresses impacts for all natural resource categories, nor do existing methods and models addressing different natural resource categories do so in a consistent way across categories. Exceptions are exergy and solar energy-related methods, which cover the widest range of resource categories. However, these methods do not link exergy consumption to changes in availability or provisioning capacity of a specific natural resource (e.g., mineral, water, land etc.). So far, there is no agreement in the scientific community on the most relevant type of future resource indicators (depletion, increased energy use or cost due to resource extraction, etc.). To address this challenge, a framework based on the concept of stock/fund/flow resources is proposed to identify, across natural resource categories, whether depletion/dissipation (of stocks and funds) or competition (for flows) is the main relevant aspect.

Conclusions

An LCIA method—or a set of methods—that consistently address all natural resource categories is needed in order to avoid burden shifting from the impact associated with one resource to the impact associated with another resource. This paper is an important basis for a step forward in the direction of consistently integrating the various natural resources as an Area of Protection into LCA.
  相似文献   

20.

Purpose

Salinisation is a threat not only to arable land but also to freshwater resources. Nevertheless, salinisation impacts have been rarely and only partially included in life cycle assessment (LCA) so far. The objectives of this review paper were to give a comprehensive overview of salinisation mechanisms due to human interventions, analyse the completeness, relevance and scientific robustness of existing published methods addressing salinisation in LCA and provide recommendations towards a comprehensive integration of salinisation within the impact modelling frameworks in LCA.

Methods

First, with the support of salinisation experts and related literature, we highlighted multiple causes of soil and water salinisation and presented induced effects on human health, ecosystems and resources. Second, existing life cycle impact assessment (LCIA) methods addressing salinisation were analysed against the International Reference Life Cycle Data System analysis grid of the European Commission. Third, adopting a holistic approach, the modelling options for salinisation impacts were analysed in agreement with up-to-date LCIA frameworks and models.

Results and discussion

We proposed a categorisation of salinisation processes in four main types based on salinisation determinism: land use change, irrigation, brine disposal and overuse of a water body. For each salinisation type, key human management and biophysical factors involved were identified. Although the existing methods addressing salinisation in LCA are important and relevant contributions, they are often incomplete with regards to both the salinisation pathways they address and their geographical validity. Thus, there is a lack of a consistent framework for salinisation impact assessment in LCA. In analysing existing LCIA models, we discussed the inventory and impact assessment boundary options. The land use/land use change framework represents a good basis for the integration of salinisation impacts due to a land use change but should be completed to account for off-site impacts. Conversely, the land use/land use change framework is not appropriate to model salinisation due to irrigation, overuse of a water body and brine disposal. For all salinisation pathways, a bottom-up approach describing the environmental mechanisms (fate, exposure and effect) is recommended rather than an empirical or top-down approach because (i) salts and water are mobile and theirs effects are interconnected; (ii) water and soil characteristics vary greatly spatially; (iii) this approach allows the evaluation of both on- and off-site impacts and (iv) it is the best way to discriminate systems and support a reliable eco-design.

Conclusions

This paper highlights the importance of including salinisation impacts in LCA. Much research effort is still required to include salinisation impacts in a global, consistent and operational manner in LCA, and this paper provides the basis for future methodological developments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号