首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Down syndrome (DS) is a major cause of mental retardation and heart disease. Although it is usually caused by the presence of an extra chromosome 21, a subset of the diagnostic features may be caused by the presence of only band 21q22. We now present evidence that significantly narrows the chromosomal region responsible for several of the phenotypic features of DS. We report a molecular and cytogenetic analysis of a three-generation family containing four individuals with clinical DS as manifested by the characteristic facial appearance, endocardial cushion defect, mental retardation, and probably dermatoglyphic changes. Autoradiograms of quantitative Southern blots of DNAs from two affected sisters, their carrier father, and a normal control were analyzed after hybridization with two to six unique DNA sequences regionally mapped on chromosome 21. These include cDNA probes for the genes for CuZn-superoxide dismutase (SOD1) mapping in 21q22.1 and for the amyloid precursor protein (APP) mapping in 21q11.2-21.05, in addition to six probes for single-copy sequences: D21S46 in 21q11.2-21.05, D21S47 and SF57 in 21q22.1-22.3, and D21S39, D21S42, and D21S43 in 21q22.3. All sequences located in 21q22.3 were present in three copies in the affected individuals, whereas those located proximal to this region were present in only two copies. In the carrier father, all DNA sequences were present in only two copies. Cytogenetic analysis of affected individuals employing R and G banding of prometaphase preparations combined with in situ hybridization revealed a translocation of the region from very distal 21q22.1 to 21qter to chromosome 4q. Except for a possible phenotypic contribution from the deletion of chromosome band 4q35, these data provide a molecular definition of the minimal region of chromosome 21 which, when duplicated, generates the facial features, heart defect, a component of the mental retardation, and probably several of the dermatoglyphic changes of DS. This region may include parts of bands 21q22.2 and 21q22.3, but it must exclude the genes S0D1 and APP and most of band 21q22.1, specifically the region defined by S0D1, SF57 and D21S47.  相似文献   

2.
Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.  相似文献   

3.
Summary We have characterised by cytogenetic and molecular analysis a de novo tandem duplication of chromosome 21. High resolution chromosome examination of lymphocytes revealed the following karyotype in 90% of the cells: 46,XY,dir dup (21)(pterq22.300::q11.205 qter). Of these cells, 10% showed a normal karyotype. Gene dosage of chromosome 21 sequences by a slot blot method indicated that the duplication extends from D21S16 to D21S55. In situ hybridization with probes close to the borders of the duplicated segment confirmed the gene dosage data and gave results consistent with a true tandem duplication of chromosome 21. Pulsed field gel electrophoresis of the patient's DNA showed an abnormal restriction band common to D21S55 and D21S16, confirming that the junction point between the two homologous parts of the tandem chromosome brings these two sequences into proximity. Restriction fragment length polymorphism analysis indicated that the abnormal chromosome was maternal in origin and that the rearrangement of chromosome 21 could not have occurred at a post-zygotic stage of development but resulted from a recombination event during maternal gametogenesis. The possible mechanisms of formation of the abnormal chromosome are discussed, as is the presence of cells with normal chromosomes 21, in the patient.  相似文献   

4.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

5.
Endogenous human centromeres form on megabase-sized arrays of tandemly repeated alpha satellite DNA. Human neocentromeres form epigenetically at ectopic sites devoid of alpha satellite DNA and permit analysis of centromeric DNA and chromatin organization. In this study, we present molecular cytogenetic and CENP-A chromatin immunoprecipitation (ChIP) on CHIP analyses of two neocentromeres that have formed in chromosome band 8q21 each with a unique DNA and CENP-A chromatin configuration. The first neocentromere was found on a neodicentric chromosome 8 with an inactivated endogenous centromere, where the centromeric activity and CENP-A domain were repositioned to band 8q21 on a large tandemly repeated DNA. This is the first example of a neocentromere forming on repetitive DNA, as all other mapped neocentromeres have formed on single copy DNA. Quantitative fluorescent in situ hybridization (FISH) analysis showed a 60% reduction in the alpha satellite array size at the inactive centromere compared to the active centromere on the normal chromosome 8. This neodicentric chromosome may provide insight into centromere inactivation and the role of tandem DNA in centromere structure. The second neocentromere was found on a neocentric ring chromosome that contained the 8q21 tandemly repeated DNA, although the neocentromere was localized to a different genomic region. Interestingly, this neocentromere is composed of two distinct CENP-A domains in bands 8q21 and 8q24, which are brought into closer proximity on the ring chromosome. This neocentromere suggests that chromosomal rearrangement and DNA breakage may be involved in neocentromere formation. These novel examples provide insight into the formation and structure of human neocentromeres.  相似文献   

6.
Chromosomes occupy distinct interphase territories in the three‐dimensional nucleus. However, how these chromosome territories are arranged relative to one another is poorly understood. Here, we investigated the inter‐chromosomal interactions between chromosomes 2q, 12, and 17 in human mesenchymal stem cells (MSCs) and MSC‐derived cell types by DNA‐FISH. We compared our findings in normal karyotypes with a three‐generation family harboring a 2q37‐deletion syndrome, featuring a heterozygous partial deletion of histone deacetylase 4 (HDAC4) on chr2q37. In normal karyotypes, we detected stable, recurring arrangements and interactions between the three chromosomal territories with a tissue‐specific interaction bias at certain loci. These inter‐chromosomal interactions were confirmed by Hi‐C. Interestingly, the disease‐related HDAC4 deletion resulted in displaced inter‐chromosomal arrangements and altered interactions between the deletion‐affected chromosome 2 and chromosome 12 and/or 17 in 2q37‐deletion syndrome patients. Our findings provide evidence for a direct link between a structural chromosomal aberration and altered interphase architecture that results in a nuclear configuration, supporting a possible molecular pathogenesis.  相似文献   

7.
The authors used genomic single copy DNA fragments cloned from chromosome 21 to study cytogenetic abnormalities in patients not easily defined by conventional cytogenetic means. Ten restriction fragment length polymorphisms (RLFP) detected by 8 independent probes were used to detect homologous sequences from chromosome 21 in genomic digests of DNA from one patient and her parents. The proband is a 3 1/2-year-old girl who was referred to us at 1 month of age because of hypertonia, hirsutism, flattened nasal bridge, antimongoloid slant of palpebral fissures, high arched palate and bilateral hip dysplasia. The karyotype of the proband was: 46, XX, -3, -21, + ? del (3) (3 pter----3q1:) +? (3qter----3q1:: 21q21----21 pter). GTG banding and the karyotype of her parents were normal (in peripheral blood and skin fibroblasts). She was re-examined by us every three months, because she showed physical and psychomotor retardation. We traced the inheritance of RFLPs from her parents, and familial molecular studies showed in contrast to the cytogenetic analysis that the patient is disomic for all regions of 21q tested by our collection of probes. The use of molecular technology has resulted in a more precise definition of 21 chromosome abnormalities and especially the "complete" monosomy 21 which is extremely rare in live born infants.  相似文献   

8.
Three Down syndrome patients for whom karyotypic analysis showed a "mirror" (reverse tandem) duplication of chromosome 21 were studied by phenotypic, cytogenetic, and molecular methods. On high-resolution R-banding analysis performed in two cases, the size of the fusion 21q22.3 band was apparently less than twice the size of the normal 21q22.3, suggesting a partial deletion of distal 21q. The evaluation of eight chromosome 21 single-copy sequences of the 21q22 region--namely, SOD1, D21S15, D21S42, CRYA1, PFKL, CD18, COL6A1, and S100B--by a slot blot method showed in all three cases a partial deletion of 21q22.3 and partial monosomy. The translocation breakpoints were different in each patient, and in two cases the rearranged chromosome was found to be asymmetrical. The molecular definition of the monosomy 21 in each patient was, respectively, COL6A1-S100B, CD18-S100B, and PFKL-S100B. DNA polymorphism analysis indicated in all cases a homozygosity of the duplicated material. The duplicated region was maternal in two patients and paternal in one patient. These data suggest that the reverse tandem chromosomes did not result from a telomeric fusion between chromosomes 21 but from a translocation between sister chromatids. The phenotypes of these patients did not differ significantly from that of individuals with full trisomy 21, except in one case with large ears with an unfolded helix. The fact that monosomy of distal 21q22.3 in these patients resulted in a phenotype very similar to Down syndrome suggests that the duplication of the genes located in this part of chromosome 21 is not necessary for the pathogenesis of the Down syndrome features observed in these patients, including most of the facial and hand features, muscular hypotonia, cardiopathy of the Fallot tetralogy type, and part of the mental retardation.  相似文献   

9.
The mei-41 gene of Drosophila melanogaster plays an essential role in meiosis, in the maintenance of somatic chromosome stability, in postreplication repair and in DNA double-strand break repair. This gene has been cytogenetically localized to polytene chromosome bands 14C4-6 using available chromosomal aberrations. About 60 kb of DNA sequence has been isolated following a bidirectional chromosomal walk that extends over the cytogenetic interval 14C1-6. The breakpoints of chromosomal aberrations identified within that walk establish that the entire mei-41 gene has been cloned. Two independently derived mei-41 mutants have been shown to carry P insertions within a single 2.2 kb fragment of the walk. Since revertants of those mutants have lost the P element sequences, an essential region of the mei-41 gene is present in that fragment. A 10.5 kb genomic fragment that spans the P insertion sites has been found to restore methyl methanesulfonate resistance and female fertility of the mei-41 D3 mutants. The results demonstrate that all the sequences required for the proper expression of the mei-41 gene are present on this genomic fragment. This study provides the foundation for molecular analysis of a function that is essential for chromosome stability in both the germline and somatic cells.This Paper is dedicated to the memory of Professor James B. Boyd  相似文献   

10.
Molecular cytogenetic analyses have resolved the pathogenetic aberration of an 8-year-old girl with tricho-rhino-phalangeal syndrome type I (TRPS I), normal intelligence, and a karyotype originally described as 46,XX,t(8;13)(q24;q21). R- and Q-banding and high resolution R-banding analyses have also disclosed a seemingly mosaic abnormality of the distal short arm of chromosome 7 but have not fully characterized this abnormality. Combined primed in situ labelling and chromosome painting, and three-colour chromosome painting have revealed a complex, apparently balanced translocation t(7;13;8). Fluorescence in situ hybridization with yeast artificial chromosome and cosmid clones from 8q24.1 has shown an interstitial deletion of at least 3 Mb covering most of the TRPS I critical region. Received: 27 December 1996 / Accepted: 27 March 1997  相似文献   

11.
Down syndrome (DS) is a major cause of congenital heart and gut disease and mental retardation. DS individuals also have characteristic facies, hands, and dermatoglyphics, in addition to abnormalities of the immune system, an increased risk of leukemia, and an Alzheimer-like dementia. Although their molecular basis is unknown, recent work on patients with DS and partial duplications of chromosome 21 has suggested small chromosomal regions located in band q22 that are likely to contain the genes for some of these features. We now extend these analyses to define molecular markers for the congenital heart disease, the duodenal stenosis, and an "overlap" region for the facial and some of the skeletal features. We report the clinical, cytogenetic, and molecular analysis of two patients. The first is DUP21JS, who carries both a partial duplication of chromosome 21, including the region 21q21.1-q22.13, or proximal q22.2, and DS features including duodenal stenosis. Using quantitative Southern blot dosage analysis and 15 DNA sequences unique to chromosome 21, we have defined the molecular extent of the duplication. This includes the region defined by DNA sequences for APP (amyloid precursor protein), SOD1 (CuZn superoxide dismutase), D21S47, SF57, D21S17, D21S55, D21S3, and D21S15 and excludes the regions defined by DNA sequences for D21S16, D21S46, D21S1, D21S19, BCE I (breast cancer estrogen-inducible gene), D21S39, and D21S44. Using similar techniques, we have also defined the region duplicated in the second case occurring in a family carrying a translocation associated with DS and congenital heart disease. This region includes DNA sequences for D21S55 and D21S3 and excludes DNA sequences for D21S47 and D21S17.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Summary The largest class of de novo chromosomal rearrangements in Down syndrome are rea(21q21q). Classically, these rearrangements have been termed Robertsonian translocations, implying an attachment of two different chromosome 21 homologues. Additionally, a Robertsonian translocation between two chromosomes 21 cannot be distinguished from an isochromosome composed of genetically identical arms by cytogenetic analyses. Therefore, we have used molecular techniques to differentiate between true Robertsonian translocations and isochromosomes. Samples were obtained from 12 probands, ascertained for de novo rearrangements between homologous chromosomes 21 [11 rea(21q21q) and 1 rea (21;21)(q22;q22)], their parents (n = 24) and available siblings (n = 7). The parental origins of the de novo rearrangements were assigned using molecular and cytogenetic analyses. Although not statistically significant, there was a two-fold increase in the number of paternally derived de novo rearrangements (n = 8) as compared with maternally derived rearrangements (n = 4). To distinguish between rob(21q21q) and i(21q), we used restriction fragment length polymorphisms (RFLPs) spanning the length of chromosome 21. Using all informative and partially informative RFLPs, we used the method of maximum likelihood to assign the most likely rearrangement definition (i or rob) and parental origin in each family. The maximum likelihood estimates indicated that all rearrangements tested (n = 8) were isochromosomes. C-banding revealed two centromeres in three cases indicating that a U-type exchange occurred between sister chromatids in these rearrangements. Our results suggest that the majority of de novo rea(21q21q) are isochromosomes derived from a single parental chromosome 21.  相似文献   

13.
Mutations at the mouse pink-eyed dilution locus, p, cause hypopigmentation. We have cloned the mouse p gene cDNA and the cDNA of its human counterpart, P. The region of mouse chromosome 7 containing the p locus is syntenic with human chromosome 15q11-q13, a region associated with Prader-Willi syndrome (PWS) and Angelman syndrome (AS), both of which involve profound imprinting effects. PWS patients lack sequences of paternal origin from 15q, whereas AS patients lack a maternal copy of an essential region from 15q. However, the critical regions for these syndromes are much smaller than the chromosomal region commonly deleted that often includes the P gene. Hypopigmentation in PWS and AS patients is correlated with deletions of one copy of the human P gene that is highly homologous with its mouse counterpart. A subset of PWS and AS patients also have OCA2. These patients lack one copy of the P gene in the context of a PWS or AS deletion, with a mutation in the remaining chromosomal homologue of the P gene. Mutations in both homologues of the P gene of OCA2 patients who do not have PWS or AS have also been detected.  相似文献   

14.
Cytogenetic analysis of a meningioma from a 46-year-old female patient exhibited as the sole cytogenetic aberration a deletion on the long arm of one chromosome 3 involving bands 3q24----qter. To verify this finding, RFLP analysis was performed with two polymorphic probes, MOX2 and D3S5. The patient was informative for both single copy probes and demonstrated loss of heterozygosity in the region above whereas chromosome 22 displayed no loss of heterozygosity as judged by a proximal and a distal probe.  相似文献   

15.
Microarray-based comparative genomic hybridization (array-CGH) led to the discovery of genetic abnormalities among patients with complex phenotype and normal karyotype. Also several apparently normal individuals have been found to be carriers of cryptic imbalances, hence the importance to perform parental investigations after the identification of a deletion/duplication in a proband. Here, we report the molecular cytogenetic characterization of two individuals in which the microdeletions/duplications present in their parents could have predisposed and facilitated the formation of de novo pathogenic different copy number variations (CNVs). In family 1, a 4-year-old girl had a de novo pathogenic 10.5 Mb duplication at 15q21.2q22.2, while her mother showed a 2.262 Mb deletion at 15q13.2q13.3; in family 2, a 9-year-old boy had a de novo 1.417 Mb deletion at 22q11.21 and a second paternal deletion of 247 Kb at 22q11.23 on the same chromosome 22. Chromosome 22 at band q11.2 and chromosome 15 at band q11q13 are considered unstable regions. We could hypothesize that 15q13.2q13.3 and 22q11.21 deletions in the two respective parents might have increased the risk of rearrangements in their children. This study highlights the difficulty to make genetic counseling and predict the phenotypic consequences in these situations.  相似文献   

16.
We describe a 17-month-old infant with clinical features of Down syndrome and a normal karyotype by standard chromosomal analysis, her two uncles aged 28 and 30 years, respectively, with reduced intelligence and unusual appearance but not apparent Down syndrome, and a severely retarded 6-year-old girl with dysmorphy and epilepsy from the same family. Cytogenetic studies of patients and normal intervening relatives had been carried out at different institutions with normal results. Fluorescence in situ hybridization using whole chromosome painting and unique-copy probes (cosmids) and high-resolution banding revealed a familial subtelomeric translocation of chromosomes 18 and 21, resulting in partial trisomy 21 in the infant and her two uncles, and partial monosomy 21 in the 6-year-old girl. Cytogenetic breakpoints were located in bands 18q23 and 21q22.1, respectively. The molecular breakpoint on chromosome 21 was located between D21S211 (proximal) and D21S1283 (distal) and thus maps within the Down syndrome critical region. Received: 11 November 1996 / Accepted: 29 April 1997  相似文献   

17.
The critical segment for the Langer-Giedion syndrome: 8q24.11----q24.12   总被引:2,自引:0,他引:2  
An 18-year-old intellectually normal male with characteristic features of the Langer-Giedion syndrome is reported. High resolution chromosome analysis showed a small deletion in the region of bands 8q24.11 and 8q24.12 in addition to an apparently balanced de novo translocation (2;9)(q21;q13). This finding provides additional information on the minimum deleted segment required to produce the Langer-Giedion syndrome and may indicate that deletions of this size or smaller are not necessarily associated with mental retardation.  相似文献   

18.
High-resolution cytogenetics analysis of peripheral blood lymphocytes was done prospectively on 27 of 28 patients with features of DiGeorge anomaly. Twenty-two patients (81%) had normal chromosome studies with no detectable deletion in chromosome 22. Five patients (18%) had demonstrable chromosome abnormalities. Three patients had monosomy 22q11, one due to a 4q;22q translocation, one due to a 20q;22q translocation, and one due to an interstitial deletion of 22q11. One patient had monosomy 10p13, and one patient had monosomy 18q21.33, although the latter had subsequent resolution of T-cell defects. These findings are consistent with the heterogeneity of DiGeorge anomaly but confirm the association with monosomy 22q11 in some cases. However, monosomy 10p13 may also lead to this phenotype. Because of these associated chromosome findings, cytogenetic analyses should be done on patients with suspected DiGeorge anomaly. This is particularly important since many of the abnormalities involving chromosome 22 are translocations that can be familial with a higher recurrence risk. Since only one subtle, interstitial deletion of chromosome 22 was observed, it is not clear whether high-resolution cytogenetic analysis is cost beneficial for all such patients.  相似文献   

19.
Hu L  Sham JS  Tjia WM  Tan YQ  Lu GX  Guan XY 《Genomics》2004,83(2):298-302
Chromosomal rearrangements involving telomeric bands have been frequently detected in many malignancies and congenital diseases. To develop a useful tool to study chromosomal rearrangements within the telomeric band effectively and accurately, a whole set of telomeric band painting probes (TBP) has been generated by chromosome microdissection. The intensity and specificity of these TBPs have been tested by fluorescence in situ hybridization and all TBPs showed strong and specific signals to target regions. TBPs of 6q and 17p were successfully used to detect the loss of the terminal band of 6q in a hepatocellular carcinoma cell line and a complex translocation involving the 17p terminal band in a melanoma cell line. Meanwhile, the TBP of 21q was used to detect a de novo translocation, t(12;21), and the breakpoint at 21q was located at 21q22.2. Further application of these TBPs should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements involving telomeric bands.  相似文献   

20.
Neuroblastoma, the most common solid tumour in early childhood, is characterized by very frequent chromosomal copy number variations (CNVs). While chromosome 2p amplification, 17q gain, 1p and 11q deletion in human neuroblastoma tissues are well-known, the exact frequencies and boundaries of the chromosomal CNVs have not been delineated. We analysed the publicly available single nucleotide polymorphism (SNP) array data which were originally generated by the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative, defined the frequencies and boundaries of chromosomes 2p11.2 – 2p25.3 amplification, 17q11.1-17q25.3 gain, 1p13.3-1p36.33 deletion and 11q13.3-11q25 deletion in neuroblastoma tissues, and identified chromosome 7q14.1 (Chr7:38254795-38346971) and chromosome 14q11.2 (Chr14:21637401-22024617) deletion in blood and bone marrow samples from neuroblastoma patients, but not in tumour tissues. Kaplan Meier analysis showed that double deletion of Chr7q14.1 and Chr14q11.2 correlated with poor prognosis in MYCN gene amplified neuroblastoma patients. In conclusion, the oncogenes amplified or gained and tumour suppressor genes deleted within the boundaries of chromosomal CNVs in tumour tissues should be studied for their roles in tumourigenesis and as therapeutic targets. Focal deletions of Chr7q14.1 and Chr14q11.2 together in blood and bone marrow samples from neuroblastoma patients can be used as a marker for poorer prognosis and more aggressive therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号