首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With recent advances in protein microchemistry, compatible methods for the preparation and quantitation of proteins and peptides are required. Fluorescamine, a reagent which reacts with primary amino groups has been used successfully to detect amino acids, peptides, and proteins in various micromethods. This article discusses these methods which include (1) amino acid analysis of protein and peptide hydrolysates with postcolumn fluorescamine derivatization; (2) purification and characterization of proteins and peptides by reversed-phase HPLC with postcolumn fluorescamine derivatization; (3) purification of peptides by two-dimensional chromatography and electrophoresis on thin-layer cellulose with fluorescamine staining; and (4) electroblotting of protein bands from SDS-PAGE to glass fiber filters and polyvinylidene difluoride (PVDF) membranes with fluorescamine staining. In addition, this article also compares a postcolumn fluorescamine detection system with a UV detection system in the applications of amino acid analysis and reversed-phase HPLC protein/peptide analysis.  相似文献   

2.
A new method for the end-group determination of peptides using the fluorogenic reagents fluorescamine or o-phthalaldehyde is described. The method is based on the property that the derivatives of the N-terminal amino group of peptides formed in solution after reaction with either reagent are resistant to acid hydrolysis. The N-terminal amino acid can be determined by simply comparing the amino acid analysis of the original peptide with the fluorescent derivative of the peptide. In general, the decrease of the N-terminal residue in the reacted peptides in 80–90% with fluorescamine and more than 90% with o-phthalaldehyde. Any N-terminal amino acid, with the exception of proline, can thus be determined.  相似文献   

3.
Use of fluorescamine in the chromatographic analysis of peptides from proteins   总被引:10,自引:0,他引:10  
A routine procedure for the fluorometric analyses of peptides in the column chromatographic fraction has been described. Sensitivities of detection are 3–5 times higher in the direct fluorescamine method and 6–50 times higher in the method with alkaline hydrolysis than the conventional ninhydrin color method with hydrolysis (11).Reactivity of peptides with fluorescamine appears to depend mainly on the nature of amino acids occupying the amino termini; ?-amino groups of lysine residues in the peptides tested have been found not to contribute significantly in yielding fluorescence in the reaction.  相似文献   

4.
Sensitive fluorescent determination of trypsin-like proteases   总被引:1,自引:0,他引:1  
A new sensitive assay for trypsin-like proteases has been developed using as substrate protamine sulfate from herring with the amino terminal group blocked with dinitrofluorobenzene. Enzymatic hydrolysis liberated amino groups which were quantitated by measuring fluorescence after reaction with fluorescamine. Thrombin was capable of hydrolyzing this substrate at a concentration as low as 8.3 NIH units per ml. Amino acid analysis of the protamine suggests that thrombin is capable of hydrolyzing a peptide bond other than an arginyl-glycine bond. Inhibition of thrombin by n-acetylimidazole suggests a relationship between the clotting and proteolytic activities of thrombin.  相似文献   

5.
A recording viscometer for assaying mammalian collagenase.   总被引:1,自引:1,他引:0       下载免费PDF全文
A recording viscometer for monitoring the action of mammalian collagenase on soluble collagen is described. For this system, where only one peptide bond is cleaved per subunit, it is shown theoretically that the decrease in viscosity is proportional to the fraction of molecules cleaved. Experimental confirmation was obtained by parallel monitoring of hydrolysis by using the fluorescamine assay of liberated amino groups. The initial velocity of reaction is proportional to substrate concentration and enzyme concentration.  相似文献   

6.
The sequence specificity of human skin fibroblast collagenase has been investigated by measuring the rate of hydrolysis of 16 synthetic octapeptides covering the P4 through P4' subsites of the substrate. The choice of peptides was patterned after potential collagenase cleavage sites (those containing either the Gly-Leu-Ala or Gly-Ile-Ala sequences) found in types I, II, and III collagens. The initial rate of hydrolysis of the P1-P1' bond of each peptide has been measured by quantitating the concentration of amino groups produced upon cleavage after reaction with fluorescamine. The reactions have been carried out under first-order conditions ([S] much less than KM) and kcat/KM values have been calculated from the initial rates. The amino acids in subsites P3 (Pro, Ala, Leu, or Asn), P2 (Gln, Leu, Hyp, Arg, Asp, or Val), P1' (Ile or Leu), and P4' (Gln, Thr, His, Ala, or Pro) all influence the hydrolysis rates. However, the differences in the relative rates observed for these octapeptides cannot in themselves explain why fibroblast collagenase hydrolyzes only the Gly-Leu and Gly-Ile bonds found at the cleavage site of native collagens. This supports the notion that the local structure of collagen is important in determining the location of the mammalian collagenase cleavage site.  相似文献   

7.
Recently, we described a sequence-specific R1-(Ser/Thr) peptide bond hydrolysis reaction in peptides of a general sequence R1-(Ser/Thr)-Xaa-His-Zaa-R, which occurs in the presence of Ni(II) ions [A. Kr??el, E. Kopera, A. M. Protas, A. Wys?ouch-Cieszyńska, J. Poznański, W. Bal, J. Am. Chem. Soc. 132 (2010) 3355-3366]. In this study we explored the possibility of substituting the Ser/Thr and the His residues, necessary for the reaction to occur according to the Ni(II)-assisted acyl shift reaction mechanism, with Cys residues. We tested this concept by synthesizing three homologous peptides: R1-Ser-Arg-Cys-Trp-R2, R1-Cys-Arg-His-Trp-R2, and R1-Cys-Arg-Cys-Trp-R2, and the R1-Ser-Arg-His-Trp-R2 peptide as comparator (R1 and R2 were CH3CO-Gly-Ala and Lys-Phe-Leu-NH2, respectively). We studied their hydrolysis in the presence of Ni(II) ions, under anaerobic conditions and in the presence of TCEP as a thiol group antioxidant. We measured hydrolysis rates using HPLC and identified products of reaction using electrospray mass spectrometry. Potentiometry and UV-vis spectroscopy were used to assess Ni(II) complexation. We demonstrated that Ni(II) is not compatible with the Cys substitution of the Ser/Thr acyl acceptor residue, but the substitution of the Ni(II) binding His residue with a Cys yields a peptide susceptible to Ni(II)-related hydrolysis. The relatively high activity of the R1-Ser-Arg-Cys-Trp-R2 peptide at pH 7.0 suggests that this peptide and its Cys-containing analogs might be useful in practical applications of Ni(II)-dependent peptide bond hydrolysis.  相似文献   

8.
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.  相似文献   

9.
A method is described for the conversion of secondary amino acids to primary amines which can be assayed with fluorescamine (I). Secondary amino acids undergo oxidative decar?ylation when reacted with halogenating agents. The resulting imines are hydrolyzed to primary amines, which are subsequently allowed to react with fluorescamine (I) to yield fluorescent pyrrolinones (II). This reaction sequence provides an efficient fluorometric assay for secondary amino acids. Thus, the fluorescamine procedure is now applicable to the full array of natural amino acids.  相似文献   

10.
The demand to increase throughput in HTS programs, without a concomitant addition to costs, has grown significantly during the past few years. One approach to handle this demand is assay miniaturization, which can provide greater throughput, as well as significant cost savings through reduced reagent costs. Currently, one of the major challenges facing assay miniaturization is the ability to detect the assay signal accurately and rapidly in miniaturized formats. Digital imaging is a detection method that can measure fluorescent or luminescent signals in these miniaturized formats. In this study, an imaging system capable of detecting the signal from a fluorescent protease assay in multiple plate formats was used to evaluate this detection method in an HTS environment. A direct comparison was made between the results obtained from the imaging system and a fluorescent plate reader by screening 8,800 compounds in a 96-well plate format. The imaging system generated similar changes in relative signal for each well in the screen, identified the same active compounds, and yielded similar IC(50) values as compared to the plate reader. When a standard protease inhibitor was evaluated in 96-, 384-, 864-, and 1536-well plates using imaging detection, similar IC(50) values were obtained. Furthermore, similar dose-response curves were generated for the compound in 96- and 384-well assay plates read in a plate reader. These results provide support for digital imaging as an accurate and rapid detection method for high-density microtiter plates.  相似文献   

11.
The degradation of insulin and glucagon by a highly purified enzyme isolated from rat skeletal muscle was investigated. A sensitive assay for proteolytic degradation of insulin and glucagon using fluorescamine to detect an increase in primary amine groups was established. As measured by an increase in fluorescamine reactive materials, insulin was rapidly degraded by this highly purified enzyme without requiring initial disulfide cleavage. Associated with the increase in fluorescamine reactive materials was a decrease in immunoassayable insulinmglucagon wal also proteolytically degraded by this enzyme but a number of other peptides and proteins including proinsulin, and A and B chains of insulin were not degraded. Thus, we have demonstrated that insulin (and glucagon) can be proteolytically degraded by an enzyme isolated from an insulin sensitive tissue, skeletal muscle. Proteolytic degradation by this enzyme requires the intact insulin molecule rather than separate A and B chains.  相似文献   

12.
Z J Huang 《Biochemistry》1991,30(35):8530-8534
A novel enzymatic assay method was developed for fluorogenic substrates that have significant intrinsic absorbance and fluorescence under the assay conditions. Fluorescein mono-beta-D-galactoside (FMG) was chosen as the substrate for the fluorescence enzymatic assay because of the high fluorescence of its hydrolytic product (fluorescein) and suitability of being hydrolyzed by beta-galactosidase. The fluorescence-concentration relationships for fluorescein and for FMG in both the right-angle detection mode of a fluorometer and the front-face detection mode of a fluorescence plate reader were exactly established and used to determine the kinetics of the enzyme assay. The results show that only front-face detection in the fluorescence plate reader can overcome the fluorescence concentration quenching that inevitably results from high absorbance by the intrinsically absorbing substrate in the conventional fluorometer, which utilizes right-angle detection. Only with front-face detection was the fluorescent assay of FMG hydrolysis under conditions of high optical density possible. The enzymatic measurements on the fluorescence plate reader were particularly efficient for determination of the enzyme kinetics because of the high rate of data collection. In this assay system, Michaelis-Menten constant Km and enzymatic catalysis rate k2 of FMG were determined as 117.6 microM and 22.7 mumol-(min.mg)-1, respectively. The results and methods described in this paper can be generalized for any assay using a fluorogenic substrate whether or not it has a high background absorbance.  相似文献   

13.
The use of appropriate fluorometric derivatization procedures is of considerable importance for accurate determination of amino acids in biological samples and in metal-assisted peptide hydrolysis reactions. It is especially critical for the relative fluorescence intensities (RFI) of equal amounts of amino acids to be as similar as possible. While fluorescamine and naphthalene-2,3-dicarboxaldehyde (NDA) have proven to be excellent fluorogenic reagents for amino acid detection, the effects of various factors such as organic solvent, buffer, and pH have never been rigorously evaluated with respect to normalizing the relative fluorescence intensities of individual amino acids. To this end, here we describe optimized fluorescamine and NDA derivatization reactions that enhance the accuracy of microplate-based detection of amino acids. For both fluorescamine and NDA, we have shown that the RFI values of 16 of 19 amino acids are greater than 70%. Although determination of tryptophan is problematic, this difficulty is overcome by the addition of beta-cyclodextrin to the NDA reaction. In principle, the optimized fluorescamine and NDA microplate procedures reported here can be utilized as complementary techniques for the detection of 19 of 20 naturally occurring amino acids.  相似文献   

14.
A microassay for proteases using succinylcasein as a substrate.   总被引:1,自引:0,他引:1  
A photometric assay for proteases has been developed. A chemically modified casein whose amino groups were succinylated was used as a substrate. After incubation with trypsin, chymotrypsin, thermolysin, and subtilisin, the extent of hydrolysis of the substrate was determined with trinitrobenzene sulfonate (TNBS). The whole procedure of the assay was performed in the microtiter plate wells and the increase in the absorbance resulting from the reaction between TNBS and newly formed amino groups in the substrate was able to be determined with a high sensitivity by a microtiter plate reader, enabling the simultaneous measurement of a number of samples. Application of this method to the measurement of proteolytic activity contained in the protein extract of Tapes philippinarum is demonstrated.  相似文献   

15.
Three thioamide peptides in which the oxygen atom of the scissile peptide bond is replaced by sulfur (denoted by (= S)) were synthesized and found to be good, convenient substrates for carboxypeptidase A. The thioamide bond absorbs strongly in the ultraviolet region, and enzymatic hydrolysis is monitored easily using a continuously recording spectrophotometric assay. The reaction follows Michaelis-Menten kinetics with kcat values of 68, 9.0, and 3.7 sec-1 and Km values of 0.83, 0.81, and 0.53 mM for Z-Glu-Phe(= S)-Phe, Z-Gly-Ala(= S)-Phe, and Z-Phe(= S)-Phe, respectively. Activities of the thioamides and their oxygen amide analogs were determined with a series of metal-substituted carboxypeptidases. The Cd(II), Mn(II), Co(II), and Ni(II) enzymes exhibit 30%-35%, 60%-85%, 150%-190%, and 40%-55% of the Zn(II) enzyme activity with the amide substrates; this compares with 240%-970%, 0%-15%, 340%-840%, and 30%-140% of the Zn(II) activity, respectively, with the thioamides. The activity of the Cu(II) and Hg(II) enzymes is less than 3% toward all substrates. Cadmium, a thiophilic metal, yields an enzyme which is exceedingly active with the thioamides; the kcat/Km values are 2.4-9.7-fold higher than with Zn(II) carboxypeptidase. In contrast, Mn(II), which has a relatively low affinity for sulfur, yields an enzyme with correspondingly low activity toward the thioamides. The results are consistent with a mechanism for peptide bond hydrolysis in which the metal atom interacts with the substrate carbonyl atom during catalysis.  相似文献   

16.
We describe the development of a novel method for the assay of serine/threonine protein kinases based on fluorescence lifetime. The assay consists of three generic peptides (which have been used by others in the assay of >140 protein kinases in various assay formats) labeled with a long lifetime fluorescent dye (14 or 17 ns) that act as substrates for protein kinases and an iron(III) chelate that modulates the fluorescence lifetime of the peptide only when it is phosphorylated. The decrease in average fluorescence lifetime as measured in a recently developed fluorescence lifetime plate reader (Edinburgh Instruments) is a measure of the degree of phosphorylation of the peptide. We present data showing that the assay performs as well as, and in some cases better than, the “gold standard” radiometric kinase assays with respect to Z′ values, demonstrating its utility in high-throughput screening applications. We also show that the assay gives nearly identical results in trial screening to those obtained by radiometric assays and that it is less prone to interference than simple fluorescence intensity measurements.  相似文献   

17.
《Free radical research》2013,47(1):517-520
Fibrinogen is transformed into insoluble “neofibe” by reaction with up to IOOpM Cu(II) and 1.5 mM ascorbate. The soluble peptides which are released during the reaction can be monitored by amino acid analysis and by measuring released keto-carbonyl (with DNPH). Immunologic characterization of the soluble peptides. with anibodies directed against fibrino-peptide A (FPA) clearly show the release of this epitope. optimally at 50 pM Cu(II). Anti-FPB gives no evidence for the release of that epitope. However, N-terminal amino acid analyses reveals the presence of 3 peptides terminating in ALA (alpha chain FPA). GLU (beta chain FPB) and SER/ASP (unknown). The release of fibrinopeptides is interpreted within the context of a general mechanism for OH'-induced peptide chain cleavage via intermediate Schiff-base hydrolysis.  相似文献   

18.
We have investigated whether the precursors for the light-harvesting chlorophyll a/b binding proteins (LHCP) of photosystems II and I (PSII and PSI) are cleavable substrates in an organelle-free reaction, and have compared the products with those obtained during in vitro import into chloroplasts. Representatives from the tomato (Lycopersicon esculentum) LHCP family were analyzed. The precursor for LHCP type I of PSII (pLHCPII-1), encoded by the tomato gene Cab3C, was cleaved at only one site in the organelle-free assay, but two sites were recognized during import, analogous to our earlier results with a wheat precursor for LHCPII-1. The relative abundance of the two peptides produced was investigated during import of pLHCPII-1 into chloroplasts isolated from plants greened for 2 or 24 hours. In contrast to pLHCPII-1, the precursors for LHCP type II and III of PSI were cleaved in both assays, giving rise to a single peptide. The precursor for LHCP type I of PSI, encoded by gene Cab6A, yielded two peptides of 23.5 and 21.5 kilodaltons during import, whereas in the organelle-free assay only the 23.5 kilodalton peptide was found. N-terminal sequence analysis of this radiolabeled peptide has tentatively identified the site cleaved in the organelle-free assay between met40 and ser41 of the precursor.  相似文献   

19.
A system is described for the separation of the amino acids commonly found in protein hydrolysates at the picomole level using a single ion exchange column and for their quantitation by the fluorescamine (4-phenylspiro[furan-2 (3H),1′-phthalan]-3,3′-dione) reaction. Three sodium citrate buffers were required for the separation of the amino acids with an analysis time of approximately 3 hr. The amino acids in 1 μg of hydrolyzed bovine serum albumin were separated using a single ion exchange column and were detected in the effluent from the column by the fluorescamine assay. The results were compared with those obtained using a commercial amino acid analyzer and 150 μg of hydrolyzed bovine serum albumin. The chromatogram produced by the more sensitive analyzer utilizing the fluorescamine reaction to detect the amino acids compared favorably with the chromatogram produced by the commercial analyzer utilizing the ninhydrin reaction with the exception that the proline peak was missing. Proline and hydroxyproline fail to yield fluorescence on reaction with fluorescamine unless converted from imines to primary amines.  相似文献   

20.
Fibrinogen is transformed into insoluble “neofibe” by reaction with up to IOOpM Cu(II) and 1.5 mM ascorbate. The soluble peptides which are released during the reaction can be monitored by amino acid analysis and by measuring released keto-carbonyl (with DNPH). Immunologic characterization of the soluble peptides. with anibodies directed against fibrino-peptide A (FPA) clearly show the release of this epitope. optimally at 50 pM Cu(II). Anti-FPB gives no evidence for the release of that epitope. However, N-terminal amino acid analyses reveals the presence of 3 peptides terminating in ALA (alpha chain FPA). GLU (beta chain FPB) and SER/ASP (unknown). The release of fibrinopeptides is interpreted within the context of a general mechanism for OH'-induced peptide chain cleavage via intermediate Schiff-base hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号