首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Responses of Vegetable Seeds to Controlled Hydration   总被引:1,自引:1,他引:0  
Leek, onion and carrot seeds were imbibed in water and in solutionsof polyethylene glycol (PEG) 6000 over the range –0.5to –4.0 MPa osmotic potential, for periods up to 28 dat 15 C. Seeds started to germinate after 7 and 14 d at –0.5MPa and –1.0 MPa PEG, respectively, but in the lattercase, germination did not exceed 5%. No germination occurredin solutions of lower (more negative) osmotic potential. Seedmoisture content increased with osmotic potential in all threespecies and the relationships were unaffected by the durationof imbibition in solutions of –1.0 to –4.0 MPa,though leek seeds had higher moisture contents than the otherspecies for any given osmotic potential. Linear relationships between response to priming (differencebetween mean germination times of primed and untreated seeds)and seed moisture content were obtained for each species, positiveresponses being obtained above 30–35% seed moisture contentwith optima at 46, 44.5 and 44% seed moisture contents in leek,onion and carrot, respectively. Priming had no effect on embryovolume or cell number per embryo in leek and onion. Carrot embryovolume increased by 43% and cell number per embryo doubled inprimed compared with untreated seeds, whereas seeds imbibedin water showed only a slight increase in cell number per embryoat the stage when radicles were beginning to penetrate the seedcoat. Allium cepa L. cv. Rijnsburger Robusta, onion, Allium porrum L. cv. Winterreuzen, leek, Daucus carota L. cv. Nantaise, carrot, germination, priming, polyethylene glycol, seed moisture, cell number, embryo volume  相似文献   

2.
Perennial ryegrass (Lolium perenne L.) seeds (caryopses) germinateat or near the soil surface, where water potential can fluctuatewidely. This study examined germination of ‘Del Ray’perennial ryegrass seeds when imbibition was interrupted bydehydration prior to radicle emergence. Seeds were hydratedfor 0 to 40 h (26C), dehydrated at atmospheric water potentialsof –4, –40, –100 and/or –150 MPa for4–168 h, then rehydrated. Germination (radicle elongation 1 mm), seedling growth, solute leakage, and endogenous abscisicacid (ABA) levels were measured. Treatment differences in finalgermination percentage, seedling growth, and solute leakagewere generally not significant. However, the onset of radicleemergence was delayed and the rate of germination slowed whendehydration at –150 MPa was initiated after 36 or 40 hhydration. Slowed germination rates were not observed when dehydrationwas initiated before 36 h, when dehydration occurred at –4MPa, or when dehydration at –150 MPa was preceded by dehydrationat –4 MPa for 24 h. Exogenous abscisic acid (ABA) concentrationsabove 10–6 M inhibited germination. However, endogenouswhole seed ABA levels declined during imbibition due to leaching,and did not increase during dehydration treatments that delayedgermination. These results illustrate that rate of late-occurringdehydration treatments is critical in determining subsequentgermination response. We propose that seed response to late-occurringdehydration may be of ecological significance in timing radicleemergence to coincide with adequate soil moisture for seedlingestablishment. Key words: Abscisic acid, seed germination, timing  相似文献   

3.
Seed conditioning and germination in witchweed (Striga asiatica(L.) Kuntze) were temperature-dependent. With higher conditioningtemperatures, shorter conditioning time was required for germinationwith terminal dl-strigol (strigol) treatment at 30 °C. Maximumgermination (80–100%) was obtained by conditioning inwater at 20, 25, 30 and 35 °C for 14, 7, 5 and 3 d, respectively,and terminally treating with 10–6 M strigol at 30 °C.Seeds conditioned in 10–8 M strigol instead of water germinatedmuch less with the same terminal strigol treatment. Generally,conditioning was slower when seeds were conditioned in strigolrather than water. The reduction in germination rate by pretreatmentin strigol or pretreatment at low temperatures could be overcomeby increasing the terminal strigol concentration in the germinationtest. Conditioned seeds did not germinate at 10 and 15 °Cwith a terminal 10–6 M strigol treatment but yielded closeto maximum germination at 25, 30 and 35 °C with the sameterminal strigol treatment. To obtain maximum germination, boththe minimum conditioning temperature and the minimum germinationtemperature for conditioned seeds were 20 °C. Factors suchas conditioning time, and strigol concentration and temperatureduring conditioning and/or germination determine whether seedsremain in the conditioning phase or shift to a germination phase. dl-Strigol, germination stimulation, parasitic plants, seed conditioning, seed germination, Striga asiatica, temperature, weed control  相似文献   

4.
The response of the germination of seeds of Barbarea vema (Mill.)Aschers, Brassica chinensis L., Brassica juncea (L.) Czern.& Coss., Brassica oleracea L. var. gongylodes L., Camelinasaliva (L.) Crantz, Eruca saliva Mill., Lepidium sativum L.,Nasturtium officinale R. Br., and Rorippa palustris (L.) Besserto white fluorescent light of different photon flux densitiesapplied for different daily durations in a diurnal alternatingtemperature regime of 20 °C/30 °C (16 h/8 h) was quantifiedby linear relations between probit percentage germination andthe logarithm of photon dose, the product of photon flux densityand duration. The low energy reaction, in which increasing dosepromotes germination, was detected in all the seed populationsbut in Barbarea vema and Brassica Juncea the lowest photon doseapplied (10–5–2 and 10–5 7 mol m–2 d–1,respectively) was sufficient to saturate the response. Comparisons,where possible, between photoperiods demonstrated reciprocity,i.e. germination was proportional to photon dose irrespectiveof photoperiod, for the low energy reaction in Brassica oleracea(1 min d–1 to 1 h d–1), Camelina saliva (1 min d–1to 8 h d–1), Eruca saliva (1 min d–1 to 24 h d–1),Lepidium sativum (I min d–1 to 8 h d–1) and Rorippapalustris (1 min d–1 to 8 h d–1), but not in Brassicachinensis and Nasturtium officinale. The high irradiance reaction,in which increasing dose inhibits germination, was detectedin Barbarea vema, Brassica chinensis, Brassica juncea, Brassicaoleracea, and Camelina saliva. The minimum dose at which inhibitionwas detected was lO–0–3 mol m–2 d–1.These results are discussed in the context of devising optimallight regimes for laboratory tests intended to maximize germination The response of germination to photon dose was also quantifiedwith 3 x 10–4 M GA2, co-applied (Brassica chinensis, Camelinasaliva, and Lepidium sativum) and with 2 x 10–2 M potassiumnitrate co-applied (Brassica chinensis). In the latter casepotassium nitrate had no effect in the dark and inhibited germinationin the light, but GA2, promoted germination substantially inall three species. Variation amongst seeds in the minimum photondose required to stimulate germination was not affected by co-applicationof GA2, in Brassica chinensis and Camelina saliva, whereas seedsof Lepidium salivum showed a narrower distribution of sensitivitiesto the low energy reaction in the presence of GA2 Barbarea vema (Mill.) Aschers, Brassica chinensis L., Brassica juncea (L.) Czern. & Coss., Brassica oleracea L. var. gongylodes L., Camelina saliva (L.) Crantz, Eruca saliva Mill., Lepidium satiaum L., Nasturtium officinale R. Br., Rorippa palustris (L.) Besser, Cruciferae, light, gibberellic acid, seed germination, seed dormancy  相似文献   

5.
Ellis, R. H., Simon, G. and Covell, S. 1987. The influence oftemperature on seed germination rate in grain legumes. III.A comparison of five faba bean genotypes at constant temperaturesusing a new screening method.—J. exp. Bot. 38: 1033–1043. A screening procedure which requires information on the progressof germination at only four temperatures was able to definethe response of the rate of seed germination to sub- and supra-optimaltemperatures for whole seed populations of each of five fababean (Vicia faba L.) genotypes. In one population of the cultivarSutton the models for sub- and supra-optimal temperatures derivedfrom the screen satisfactorily explained observations from anearlier separate investigation at a wider range of temperatures.Two discrete groups of genotypes were identified. Within eachgroup the base temperature Tb did not differ significantly:for the landraces Lebanese Local Large and Syrian Local Largethe value was estimated to be –7·5°C and forthe landrace Lebanese Local Small and the cultivars Sutton andAquadulce it was –4·0°C. The optimum temperaturefor the 50th percentile [To(50), at which temperature the rateof germination is maximal] also varied between these two groupsof genotypes, being 20·5–21·5°C forthe first group and 24·5–26·0°C forthe second. In several temperature regimes some of the viableseeds within a seed population failed to germinate. Nevertheless,even at temperatures where a substantial proportion of the seedsfailed to germinate the models defined by the screening methodpredicted the germination times of those seeds which did germinate. Key words: Faba bean, seed gemination rate, temperature  相似文献   

6.
Seeds of lettuce (Lactuca sativa L.) and sunflower (Helianthusannuus L.) were stored hermetically at 35 °C with 11 differentmoisture contents between 1·3 and 6·9%, and between1·3 and 7·1% of fresh mass, respectively. Germinationand vigour (mean germination time, root length, seedling dryweight) were determined after storage for 0, 8, or 16 weeks(sunflower) or 0, 8, 16, or 48 weeks (lettuce) in these environmentsfollowed by various humidification treatments (to avoid imbibitioninjury). The range of seed storage moisture contents over whichdeterioration was minimized depended upon the criterion of deteriorationused, and varied somewhat between species. Comparison of theseranges for seeds stored for the longest durations showed thatfor some criteria seed performance was poorer (P < 0·05)at both the lowest and highest moisture contents investigatedthan at certain of the intermediate storage moisture contents(e.g, most rapid germination occurred in sunflower followingstorage at 2·2-4·7% moisture content), whereasfor other criteria all the drier storage moisture contents weresuperior to the more moist (e,g. greatest seedling growth occurredin sunflower following storage at 1·3-5·1% moisturecontent). But none of these results suggested that lettuce andsunflower seeds stored hermetically at 2·5-3·0%or 2·2-2·5% moisture content, respectively, wereless vigorous than at any other moisture content tested. Inboth species, these storage moisture contents are in equilibriumwith about 8-10% relative humidity (r.h.) at 20 °C, whichis similar to and indeed marginally less than the 10-13% r.h.recommended following earlier studies on the longevity of seedsin hermetic storage at much warmer temperatures. Thus, theseresults show no evidence that the optimum seed moisture contentfor storage increases with decrease in temperature, at leastover the range 35-65 °C, as has been suggested elsewhere.We conclude that the international recommendation for the long-termseed storage for genetic conservation at 5 ± 1% moisturecontent should not be revised upwardly, and that in situationswhere refrigeration cannot be provided storage at even lowermoisture contents is worthy of further investigation for thoseseeds in which desiccation at 20 °C to equilibrium at 10%r.h. results in moisture contents well below 5%.Copyright 1995,1999 Academic Press Helianthus annuus L., sunflower, Lactuca sativa L., lettuce, desiccation, seed storage, seed vigour  相似文献   

7.
Soybean seeds [Glycine max (L.) Merr.] synthesize de novo andaccumulate several non-storage, soluble polypeptides duringnatural and precocious seed maturation. These polypeptides havepreviously been coined ‘maturation polypeptides’.The objective of this study was to determine the fate of maturationpolypeptides in naturally and precociously matured soybean seedsduring rehydration, germination, and seedling growth. Developingsoybean seeds harvested 35 d after flowering (mid-development)were precociously matured through controlled dehydration, whereasnaturally matured soybean seeds were harvested directly fromthe plant. Seeds were rehydrated with water for various timesbetween 5 and 120 h. Total soluble proteins and proteins radio-labelledin vivo were extracted from the cotyledons and embryonic axesof precociously and naturally matured and rehydrated seed tissuesand analyzed by one-dimensional PAGE and fluorography. The resultsindicated that three of the maturation polypeptides (21, 31and 128 kDa) that had accumulated in the maturing seeds (maturationpolypeptides) continued to be synthesized during early stagesof seed rehydration and germination (5–30 h after imbibition).However, the progression from seed germination into seedlinggrowth (between 30 and 72 h after imbibition) was marked bythe cessation of synthesis of the maturation polypeptides followedby the hydrolysis of storage polypeptides that had been synthesizedand accumulated during seed development. This implied a drasticredirection in seed metabolism for the precociously maturedseeds as these seeds, if not matured early, would have continuedto synthesize storage protein reserves. Glycine max (L.) Merr, soybean, cotyledons, maturation, germination/seedling growth  相似文献   

8.
THOMPSON  K. 《Annals of botany》1989,63(1):159-162
Seeds of 19 native British herbaceous species (14 grasses andfive forbs) were exposed to white light at three photon fluencerates: high (19–2 mol m–2 d–1), medium (9·6mol m–1 d–1) and low (2·3 mol m–2 d–2) These photon doses have been found by previous workers to inhibitgermination in several species. High and low photon doses wereapplied only as continuous light, but the medium dose was appliedas both continuous light and as a 12 h light/12 h dark photoperiod.All four treatments, plus a dark control, were carried out at15 °C; the high and low doses were also applied with a dailyalternation of 10/20 °C. The majority of species (15) fell into one of two groups. Inseven species germination was relatively high and consistentacross all treatments, including darkness; in the other eightspp germination was inhibited only in darkness. Mostly thesedata confirmed published results for the same species In contrast in Agrostis capillaris and A. stolonifera germinationwas high only at alternating temperatures, irrespective of photondose, but was also slightly promoted by a constant temperaturecombined with light/dark alternations. Only in Bromus sterilisand B. ereclus was germination inhibited by light, in B. erectusat all photon doses and in B. sterilis only at the highest photondose These results suggest that inhibition of germination by highirradiance light is not widespread among native British species Aira caryophyllea, Arrenatherum elatius, Festuca ovina, F. rubra, Hordeum murinum, Milhim effusum, Silene dioica, Achillea millefolium, Brachypodium syhaticum, Digitalis purpurea, Holcus lanatus, Leucanlhemum vulgare, Phleum pratense, Poa trivialis, Taraxacum officinale, Agrostis capillaris, A. stolonifera, Bromus erectus, B. sterilis, seed, dormancy, germination, light, High irradiance reaction, alternating temperatures, photoperiod  相似文献   

9.
The effects of storage conditions on the germination of developingmuskmelon (Cucumis melo L.) seeds were tested to determine whetherafter-ripening is required to obtain maximum seed vigour. Seedswere harvested at 5 d intervals from 35 (immature) to 60 (fullymature) days after anthesis (DAA), washed, dried, and storedat water contents of 3·3 to 19% (dry weight basis) at6, 20, or 30°C for up to one year. Germination was testedin water and in polyethylene glycol 8000 solutions ( –0·2to –1·2 MPa osmotic potential) at 15, 20, 25 or30°C. Germination percentages and rates (inverse of meantimes to radicle emergence) were compared to those of newlyharvested, washed and dried seeds. For 40 and 60 DAA seeds,one year of storage at 20°C and water contents <6·5%significantly increased germination percentages and rates at20°C, but had little effect on germination at 25 and 30°C.Storage reduced the estimated base temperature (Tb) and meanbase water potential (b) for germination of both 40 and 60 DAAseeds by approximately 5°C and 0·3 MPa, respectively.Immature 35 DAA seeds showed the greatest benefit from storageat 3 to 5% water content and 30°C, as germination percentagesand rates increased at all water potentials (). Storage underthese same conditions had little effect on the germination ofmature seeds in water, but increased germination percentagesand rates at reduced 's. Accelerated ageing for one month at30°C and water contents from 15 to 19° increased germinationrates and percentages of mature seeds at reduced 's, but longerdurations resulted in sharp declines in both parameters. Immatureseeds lost viability within one month under accelerated ageingconditions. An after-ripening period is required at all stagesof muskmelon seed development to expand the temperature andwater potential ranges allowing germination and to achieve maximumgerminability and vigour. Post-harvest dormancy is deepest atthe point of maximum seed dry weight accumulation and declinesthereafter, both in situ within the ripening fruit and duringdry storage. Key words: Muskmelon, Cucumis melo L., seed, development, dormancy, germination, vigour, after-ripening  相似文献   

10.
Seed priming (imbibition in water or osmotic solutions followedby redrying) generally accelerates germination rates upon subsequentre-imbibition, but the response to priming treatments can varyboth within and among seed lots. Seed maturity could influenceresponsiveness to priming, perhaps explaining variable primingeffects among developmentally heterogeneous seed lots. In thecurrent study, muskmelon (Cucumis melo L.) seeds at two stagesof development, maturing (40 d after anthesis (DAA)) and fullymature (60 DAA), were primed in 0?3 M KNO3 for 48 h at 30 ?C,dried, and imbibed in polyethylene glycol 8000 solutions of0 to –1?2 MPa at 15, 20, 25, and 30 ?C. Germination sensitivitiesto temperature and water potential () were quantified as indicatorsof the influence of seed maturity and priming on seed vigour.Germination percentages of 40 and 60 DAA control seeds weresimilar in water at 30 ?C, but the mean germination rate (inverseof time to germination) of 40 DAA seeds was 50% less than thatof 60 DAA seeds. Germination percentages and rates of both 40and 60 DAA seeds decreased at temperatures below 25 ?C. Reductionsin also delayed and inhibited germination, with the 40 DAAseeds being more sensitive to low than the 60 DAA seeds. Primingsignificantly improved the performance of 40 DAA seeds at lowtemperatures and reduced , but had less effect on 60 DAA seeds.Priming lowered both the minimum temperature (Tb) and the minimum (b) at which germination occurred. Overall, priming of 40 DAAseeds improved their germination performance under stress conditionsto equal or exceed that of control 60 DAA seeds, while 60 DAAseeds exhibited only modest improvements due to priming. Asthe osmotic environment inside mature fruits approximates thatof a priming solution, muskmelon seeds may be ‘primed’in situ during the late stage of development after maximum dryweight accumulation. Key words: Cucumis melo L., seed priming, germination, vigour, development, temperature  相似文献   

11.
The effects of osmoconditioning on the germination at 15 and25 °C of pepper (Capsicum annuum L.) seeds were studiedover a 3-year period with respect to temperature of storage.Untreated seeds stored at 5 °C showed high germinabilitythroughout the entire storage period, whereas untreated seedsstored at 25 °C showed a progressive decline in germinability,especially when assayed at 15 °C. Seeds that had been osmoconditionedprior to storage retained a high level of germinability irrespectiveof either storage or germination temperatures. When seeds thathad been stored at 25 °C were osmoconditioned after storage,there was a significantly higher germinability (assayed at 15 °C) in comparison with the corresponding untreated seeds.Seeds that were osmoconditioned twice (prior to and after storage)germinated in a similar way to those that had been osmoconditionedonce only Lactuca saliva L., lettuce, Hordeum oulgare L., barley, seed storage, moisture content, relative humidity, water potential, temperature, oxygen  相似文献   

12.
LOO  E. N. VAN 《Annals of botany》1992,70(6):511-518
Tillering and growth parameters of perennial ryegrass cultivarsWendy (diploid) and Condesa (tetraploid) were determined ina glasshouse experiment using hydroponics at low (–1·3MPa) and normal water potential (0 MPa). At –1·3MPa, leaf extension rate was reduced by 36%. Final plant tillernumber was 20% lower at –1·3 MPa because of a 12%reduction in the leaf appearance rate in the first weeks afterthe start of the treatments. Site filling, the relative increasein tiller number per leaf appearance interval, was high (0.61)-butstill lower than theoretically possible-and was only slightlyaffected by water potential. Site filling was shown to be strictlyrelated to the number of inhibited plus unemerged tiller buds.Dry matter production was 64% lower at –1·3 MPa.Relative growth rate (RGR) was, on average, 17% lower at –1·3MPa, but the reduction was greater just after the treatmentsstarted. Also, net assimilation rate (NAR) was reduced moreby low water potential just after the start of the treatments.Specific leaf area (SLA) was 13 % lower at –1·3MPa for Wendy, but not significantly reduced for Condesa. Contraryto expectations based on the theory of the functional balancebetween root and shoot, leaf weight ratio was slightly higherat –1·3 MPa. From comparison of the results ofthis study with published data, it is concluded that effectsof drought in the field on tillering cannot be attributed onlyto low water potential. Lolium perenne L., perennial ryegrass, tillering, site filling, leaf appearance, leaf extension, growth analysis, water potential  相似文献   

13.
Wheat (Triticum aestivum L.) embryos form in dynamically-regulatedovular environments. Our objectives were to improve developmentof cultured immature wheat embryos by simulating, in vitro,abscisic acid (ABA) levels and O2 tensions as found in wheatovules during zygotic embryogenesis. We characterized from intactwheat kernels embryo respiration, embryo morphology and embryoand endosperm + ABA levels at 13, 19 and 25 d post-anthesis(DPA). Young (13 DPA) embryos were then excised and culturedin vitro, where they were exposed to 0·2 or 2·Ommol m–3 ±ABA and 2.·1, 2·5 or 7·4mol m–3 (6, 7 and 21%, respectively) gaseous O2. At 6and 12 d in culture, + ABA levels, embryo respiration and embryomorphology were characterized by treatment. Thirteen-day-oldembryos from two different plant populations differed by 17-foldin initial ABA content. However, this difference did not affectprecocious germination in vitro, nor did it affect the amountof exogenous ABA required to reduce precocious germination by40%. In this respect, embryos from both populations were equallysensitive to exogenous ABA. Cavity sap O2 levels (2·1to 2·5 mol m–3) were much more effective in preventingprecocious germination of cultured embryos than were cavitysap levels of ABA (0·2 to 2·0 mmol m–3).The combination of physiological levels of both ABA and O2 largelynormalized DW accumulation and embryo morphology without alteringendogenous + ABA levels. Residual respiration of cultured embryoswas higher than that of embryos grown in situ, and was not influencedby the exogenous O2 and ABA treatments Key words: Abscisic acid, embryo development, oxygen tensions, respiration, wheat  相似文献   

14.
CHOINSKI  J. S  JR; TUOHY  J M 《Annals of botany》1991,68(3):227-233
The germination responses of seeds from the African tree speciesColophospermum mopane, Combretum apiculatum, Acacia tortilisand Acacia karroo under varying regimes of temperature and waterstress (induced by incubation in PEG 8000) are reported Withthe exception of Combretum (at –0.14 and –0.29 MPa)and Colophospermum (at –0.29 MPa), incubation in PEG decreasedthe maximum achieved germination percentage (90–100% forall species), but did not extend the germination lag (exceptin Combretum) or affect the time required to reach maximum germinationCombretum and Colophospermum were found to germinate under thewidest range of temperatures and water potentials, for example,as strongly negative as –1.0 MPa at 20 and 30 °C,respectively These seeds also showed greater or equivalent hypocotylelongation in PEG solutions creating potentials of –0.14,–0.29 or –0.51 MPa when compared with seeds germinatedin water, indicating an additional stress adaptation Acaciaspecies showed progressive reduction in germination rates andradicle elongation in response to decreasing water potentialExperiments giving pre-imbibition treatments in water priorto transfer to PEG solutions showed that both Acacia speciesgerminated at approximately 90% if given such pre-treatmentand less than 10% if transferred directly to PEG It is concludedthat the most stress-adapted species studied are Colophospermummopane and Combretum apiculatum, a finding generally correlatedwith the growth habit of these trees Colophospermum mopane, Combretum apiculatum, Acacia tortilis, Acacia karroo, germination, water stress, Zimbabwe  相似文献   

15.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

16.
Misra, S. and Bewley, J. D. 1986. Desiccation of Phaseolus vulgansseeds during and following germination, and its effect uponthe translatable mRNA population of the seed axes.—J.exp. BoL 37: 364–374. After imbibition and germination, seeds of P. vulgaris passfrom a stage where they are insensitive to desiccation to astage where they are sensitive. Desiccation of seeds duringthe sensitive stage results in an almost total impairment ofprotein synthesis upon subsequent rehydration. Seeds desiccatedduring the desiccation-tolerant stage, however, resume proteinsynthesis at almost control levels. The protein patterns obtained following in Vitro translationof bulk RNA from fresh imbibed, desiccated, and desiccated-rehydratedseed axes were qualitatively similar at 5 HAI (the desiccation-tolerant stage). The drying treatment resulted in increasedintensity of extant proteins at 5 and 12 HAI. At 12 HAI (thetransition stage between the desiccation-tolerant and desiccation-intolerantphases) desiccation and subsequent rehydration triggered synthesisof a unique set of proteins-the rehydration proteins. At 20HAI (the desiccation-intolerant stage) desiccation resultedin an overall decline in the intensity of proteins synthesizedin vitro. Also the rehydration proteins were not synthesizedin response to a drying and rehydration treatment at this time. Key words: Seed germination, desiccation, mRNA, in vitro translation, Phaseolus vulgaris  相似文献   

17.
An Intermediate Category of Seed Storage Behaviour?: I. COFFEE   总被引:15,自引:3,他引:12  
Seeds of four cultivars of arabica coffee (Coffea arabica L.)were tested for germination following hermetic storage for upto 12 months at several different combinations of temperaturesbetween –20 °C and 15 °C and moisture contentsbetween 5% and 10% (wet basis). Most of the seeds from one cultivarwithstood desiccation to between 5% and 6% moisture content,a seed water potential of approximately –250 MPa, butthose of the remaining three cultivars were much more sensitiveto desiccation damage. Moreover, in all four cultivars, seedlongevity at cool and sub-zero temperatures, and at low moisturecontents did not conform with orthodox seed storage behaviour:viability was lost more rapidly under these conditions thanat either warmer temperatures or higher moisture contents. Theresults confirm that coffee seeds fail to satisfy the definitionsof either typical orthodox or recalcitrant seed storage behaviour.These results, therefore, point to the possibility of a thirdcategory of storage behaviour intermediate between those oforthodox and recalcitrant seeds. One of the main features ofthis category is that dry seeds are injured by low temperatures. Key words: coffee, Coffea arabica L., seed storage, seed longevity, desiccation, temperature  相似文献   

18.
Controlled environment experiments were performed to determinethe effects of temperature and water potential on germination,radicle elongation and emergence of mungbean (Vigna radiata(L.) Wilczek cv. IPB-M79-17-79). The effects of a range of constant temperatures (15–45°C) and water potentials (0 to –2.2 MPa) on germinationand radicle elongation rates were studied using an osmoticumtechnique, in which seeds were held against a semi-permeablemembrane sac containing a polyethylene glycol solution. Linearrelationships were established between median germination time(Gt50) and water potential at different temperatures, and betweenreciprocal Gt50 (germination rate) and temperature at differentwater potentials. Germination occurred at potentials as lowas –2.2 MPa at favourable temperatures (30–40 °C),but was fastest at 40 °C when water was not limiting, withan estimated base temperature (Tb) of about 10 °C. Subsequentradicle elongation, however, was restricted to a slightly narrowertemperature range and was fastest at 35 °C. The conceptof thermal time was used to develop an equation to model thecombined effects of water potential and temperature on germination.Predictions made using this model were compared with the actualgermination obtained in a related series of experiments in columnsof soil. Some differences observed suggested the additionalimportance of the seed/soil/water contact zone in influencingseed germination in soil. Seedling emergence appeared to reflectfurther the radicle elongation results by occurring within anarrower range of temperatures and water potentials than germination.Emergence had an estimated Tb of 12.6 °C and was fastestat 35 °C. A soil matric potential of not less than about–0.5 MPa at sowing was required to obtain 50% or moreseedling emergence. Key words: Germination, temperature, water potential  相似文献   

19.
The effects of temperature, 40–85 °C, on the permeabilityand germinability of the hard seeds of the pioneer tree Rhusjavanica L. with a fire syndrome were studied. The temperatureeffective for removal of the water-impermeable coat dormancyof the seeds was 55 ± 7·4 °C. With increasingtemperature, shorter exposure became sufficient to render theseeds permeable, but at temperatures above 75 °C, heat impairmentof germinability resulted in less than 60% germinability, evenwith long exposure. The most favourable regimes among thosetested were temperatures of 65–75 °C for durationsof 30–120 min, which frequently occur on denuded groundduring the midday hours of clear spring or summer days. Rhus javanica L., water-impermeable coat dormancy, seed germination, high temperature  相似文献   

20.
The Photocontrol of Spore Germination in the Fern Ceratopteris richardii   总被引:1,自引:0,他引:1  
This paper describes how different wavelengths of light regulatespore germination in the fern Ceratopteris richardii. This speciesdoes not exhibit any dark germination. Maximum photosensitivityof the spores is reached 7 to 10 d after imbibition. An increasein the red light fluence above the threshold fluence of 1016quanta.m–2 leads to a corresponding increase in germination.In sequential irradiation experiments, farred light can reversethis red light-mediated germination to the level observed withthe far-red light control. Blue light fluences above 1020 quanta.m–2can also block the germination response to red light. Moreover,this antagonistic effect of blue light is not reversed by subsequentirradiation with red light. It is therefore concluded that phytochromeand a distinct blue light photoreceptor control C. richardiispore germination. These interpretations are entirely consistentwith the published literature on other fern genera. (Received November 28, 1986; Accepted April 6, 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号