首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural pigments from plants are of growing interest as substitutes for synthetic dyes in the food and pharmaceutical industry and they increase their added value if they possess positive effects on health. These pigments can be added as such if they are in the legal authorized lists of additives or can be added as phytochemical-enriched plant extract achieving the original product, which has received it, the new nomenclature of functional food. In this way, we comprise on this review a wide point of view of a group of natural pigments known as betalains. From a chemical point of view, betalains are ammonium conjugates of betalamic acid with cyclo-DOPA (betacyanins, violet) and aminoacids or amines (betaxanthins, orange or yellow), which are compounds present in our diet. Besides and taking into account that one type of betalain, betanin is approved as food colorant (E-162) by the European Union and that enlarges the specific weight of these compounds in the diet, we have evolved an overview from the biosynthesis, technology and promoting production, industrial uses as pigments up to physiological and nutritional biovailability or biological and health-promoting properties of betalains for accessible information to industrials, researchers and consumers.  相似文献   

2.
The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.  相似文献   

3.
Fifteen polymethoxyflavones (PMFs) and hydroxylated PMFs were isolated from sweet orange (Citrus sinensis) peel extract and synthesized to investigate their biological activity. All obtained compounds were tested in HL-60 cancer cell proliferation and apoptosis induction assays. While some PMFs and hydroxylated PMFs had moderate anti-carcinogenic activities, 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone and 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone showed strong inhibitory activities against the proliferation and induced apoptosis of HL-60 cell lines.  相似文献   

4.
Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials.Key words: algae, biological activities, active ingredients  相似文献   

5.
Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed.  相似文献   

6.
分析了红色红曲霉(Monascus ruber)和烟色红曲霉(Monascus fuliginosus)发酵米粉所产橙色素的喷雾质谱图,发现烟色红曲霉所产橙色素与文献报道的相同;而红色红曲霉所产色素与文献报道不同,其主要组分是分子量分别为340.3和312.3的2种物质。  相似文献   

7.
During an investigation on actinomycetes from rhizospheric soils from Moroccan habitats, 131 streptomycetes were recovered, morphologically characterized and assessed for their antimicrobial activity. Eleven isolates were characterized by the absence of an aerial mycelium. According to the colour of aerial mycelium, the rest were grouped into seven main classes, namely, grey, yellow, cream, white, green, red and polymorphic colours (pink, orange or violet). The grey colour class dominated (40%) and the red one was found only in rhizospheric soil of the Moroccan endemic plant Argania spinosa. About one third of the isolates (34%) produced soluble pigments of various colours and 14% produced melanoid pigments. Most of the isolates (83%) were active against one or more of the organisms tested (one gram-negative bacterium, three gram-positive bacteria, three yeasts and two filamentous fungi). Most antibiotic-producing isolates possess red and white colour. Strong antibiosis was exhibited against Streptomyces scabies, Staphylococcus aureus and Bacillus subtilis (75, 68 and 60% respectively), while only 14 and 8% of isolates displayed an activity against Escherichia coli and Verticillium dahliae respectively.  相似文献   

8.
The influence of nitrilotriacetic acid trisodium salt (NTA) on the mutagenic and clastogenic activity of several water-insoluble or poorly soluble chromium compounds was determined by means of the Salmonella/microsome assay (plate test on TA100 strain) and the sister-chromatid exchange (SCE) test in mammalian cell cultures (CHO line). NTA in itself did not induce gene mutations nor did it increase the frequency of SCE. Cr(VI) compounds (Pb, Ba, Zn, Sr and Ca chromates) and an industrial Cr(VI) pigment, chromium orange (containing PbCrO4 PbO), were inactive or scarcely active mutagens in the Salmonella/microsome test when dissolved in water, but they were increasingly mutagenic when solubilized by 0.5 N NaOH or NTA (10 or 100 mg/ml). Also, the mutagenic activity of Cr(VI), contaminating an industrial Cr(III) pigment (chromite), was slightly enhanced by NTA. Mutagenicity of chromates was correlated with the amounts of Cr(VI) solubilized by NTA or alkali, as determined by the colorimetric reaction with diphenylcarbazide and atomic absorption spectrophotometry, and was decreased by incubation with microsomes, due to reduction of Cr(VI) to the genetically inactive Cr(III) form. In the SCE assay, the insoluble or poorly soluble Ba, Zn, Sr and Ca chromates and the insoluble Cr(VI) pigments zinc yellow (containing ZnCrO4 Zn(OH2], chromium yellow and molybdenum orange (both containing PbCrO4) were directly clastogenic due to cellular endocytosis taking place in prolonged treatments, and NTA significantly increased their chromosome-damaging activity.  相似文献   

9.
The primary metabolism of protobionts was probably based on the electron transfer reactions regulated by catalysts or photosensitizing pigments. The action of photoreceptive pigments was inevitable in the case of electron transfer leading to light energy storage in the reaction products. The primitive tetrapyrrolic pigments formed abiogenically (porphin, chlorin) as well as their more complicated biogenic analogs (chlorophylls) are capable to photosensitize electron transfer in systems, having various degree of molecular complexity. The inorganic photosensitizers (titanim dioxide, zinc oxide, etc.). being excited in near UV are able to perform the same reactions as porphyrins —electron transfer from donor to acceptor molecule (including photoreduction of viologens) or water molecule photooxidation (oxygen liberation), coupled with reduction of ferric compounds and quinones. The inorganic photosensitizers are not used in biological evolution; actually the inorganic ions entered into tetrapyrrolic cycle, forming effective photocatalysts. Inclusion of pigments into primary membranes led to elaborated coupling between pigments and enzymatic systems. The involvement of the excited pigments into the biocatalytic electron transfer chain served as prerequisite of effective function of photosynthetic organisms.  相似文献   

10.
Thirty-nine strains from the genus Monascus were cultivated aerobically to study the relation between nitrogen nutrition and sporulation and pigment production. The effects of yeast extract, nitrate, ammonium, and ammonium nitrate have been compared. During cultivation the pHs of the different media are not the same, resulting in the formation of different coloured pigments. When the source of nitrogen is yeast extract or nitrate the pH is around 6.5 and red pigments are formed, whereas with ammonium or ammonium nitrate the pH is around 2.5 and the pigments are orange. It is proposed that only the orange pigments, monascorubrin and rubropunctatin, are produced biosynthetically and that the other pigments are formed from these by chemical transformations depending on the cultural conditions. The presence of organic nitrogen is optimal for growth and unfavourable for pigment production. Reduced growth and best pigment formation occurs with the three other nitrogen sources. Nitrate stimulates conidiation and sexual reproduction, while ammonium is inhibitory. Pigment production is better when conidiation is reduced. A mechanism is proposed for the control of sporulation and pigment production.  相似文献   

11.
The red leaf coloration of several plant species during autumn and winter is due to the synthesis of phenolic compounds such as anthocyanins or red carotenoids. The latter occur very rarely and are non-ubiquitous and taxonomically restricted compounds. The present study shows that the leaves of common box ( Buxus sempervirens L.) accumulate red carotenoids (eschscholtzxanthin, monoanhydroeschscholtzxanthin, anhydroeschscholtzxanthin) as a response to photoinhibitory conditions during winter acclimation. These compounds are produced in a coordinated manner with the operation of other photoprotective systems: accumulation and sustained deepoxidation of VAZ pigments with a concomitant decrease in maximal photochemical efficiency, accumulation of alpha-tocopherol and a gradual decrease on chlorophyll content. All these processes were reversed when the photosynthetic tissues were transferred from photoinhibitory winter conditions to room temperature for 9 days. Buxus leaves showed a large degree of phenotype variation in the degree of reddening, ranging from green to orange. The differences in colour pattern were mainly due to differences in the accumulation of red carotenoids and xanthophyll esters. Red pigments were mainly anhydroeschscholtzxanthin and esters of eschscholtzxanthin. Conversely to fruit or petal chromoplasts, the plastids of red leaves in this species are not the terminal differentiated state but are able to redifferentiate again to chloroplasts. Their photoprotective role during winter as a light screen system or as antioxidants, in a similar way to other red pigments, and their implications on the wide ecological tolerance of this evergreen species are discussed.  相似文献   

12.
We report herein the synthesis and biological activity of a new kind of azetidinone derivatives of benzotriazole. The reaction was carried out by both conventional and microwave methods. The chemical structures of all the synthesized compounds were deduced according to FTIR, (1)H NMR, (13)C NMR and FAB-mass spectral along with microanalytical data. All the synthesized compounds of series 5a-i were evaluated for their antitubercular activity against Mycobacterium tuberculosis H37RV and antimicrobial activity against some selected microorganism. Unexpectedly, some azetidinone derivatives of benzotriazole displayed better activities.  相似文献   

13.
Infectious diseases and parasitism are major environmental forces decreasing fitness, and thus individual strategies aimed at preventing pathogen infections, either in an individual or their offspring, should be favoured by natural selection. The mineral fraction and some organic compounds in the shells of bird eggs are considered physical and chemical barriers against pathogen penetration to the embryo. However, eggshell pigment deposition has only recently been considered as a mechanism to resist pathogen penetration into the egg. By wiping the eggshell surface, the amount of pigment and some cuticle proteins were experimentally manipulated for the first time in nature. The effects on egg hatchability and offspring viability measured as nestling condition, immunocompetence and probability of recruitment were investigated in the common kestrel Falco tinnunculus. Protoporphyrin IX and biliverdin IXα to a lesser extent were the only identified pigments. The concentration of protoporphyrin IX and cuticle proteins were significantly reduced in the wiped with respect to the control treatment. Our study shows no evidence of a detrimental effect of the reduction of eggshell pigments on egg hatchability, mortality of the chicks during the nesting period, nestling body condition, nestling local immune response to PHA antigen or probability of recruitment. Further research will be necessary to elucidate the direct role of protoporphyrins and other pigments in egg bacterial infection.  相似文献   

14.
The fermentation of rice for anka pigment production   总被引:2,自引:0,他引:2  
Optimal physical parameters of the solid state fermentation of rice to produce anka pigments and their influences on pigment production were studied. Anka pigment production, especially that of two orange anka pigments (rubropunctatin and monascorubrin), was highly sensitive to the moisture content of the rice substrate. Optimal initial moisture content of rice substrate was 24%. Pigment formation was retarded when extra water was added to the inoculated substrate during cultivation. High filling amount of rice substrate in a flask was unfavorable for pigment production. Loosening of the inoculated substrate once a day enhanced pigment production. With a high carbon dioxide level in the incubator, no orange pigments were detected. Freeze drying the fermented material produced a superior yield of anka pigments, while oven drying at 50°C for 24 h was a reasonable alternative. Journal of Industrial Microbiology & Biotechnology (2000) 25, 141–146. Received 27 December 1999/ Accepted in revised form 24 June 2000  相似文献   

15.
In this study, a series of N-substituted 2-aminobenzothiazoles was prepared according to a recently developed method. Twelve compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the discussed compounds was also performed against fungal, bacterial and mycobacterial species. The biological activities of some compounds were comparable or higher than the standards phenoxymethylpenicillin or pyrazinamide. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, the structure-activity relationships are discussed.  相似文献   

16.
Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers’ demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.  相似文献   

17.
There is increasing interest in naturally produced colorants, and microalgae represent a bio‐technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal‐based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β‐carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.  相似文献   

18.
Melanin pigments constituted 13.9% of the chemical composition of the sclerotial walls of Sclerotium rolfsii and was associated with proteins, reducing sugars and amino acids. The lipid and ash contents in the sclerotial walls were double those in the hyphal walls of the fungus. Increasing age of the culture and maturation of the sclerotia were always accompanied by elevation of lipid peroxides and melanin pigments. Such behaviour may indicate that lipid peroxidation and melanin formation are operating in parallel during sclerotial biogenesis and maturation. These two processes depend on the theory of oxidative stress, as affected by growth conditions. Both processes could be stopped or sharply retarded when subjected to some antioxidant growth factors such as vitamins (ascorbic acid), micro-elements (selenium) and sulfhydryl compounds (glutathione). A clear relation between oxidative stress, myceliogenic germination and lytic activity via melanin production was observed. This finding appears promising in applying a new control measure against diseases caused by sclerotia-producing fungi without using traditional toxic fungicides.  相似文献   

19.
A series of 1,2,4-triazole derivatives containing 1,4-benzodioxan (5a-5q) have been designed, synthesized, structurally determined, and their biological activities were evaluated as potential MetAP2 inhibitors. All the synthesized compounds were first reported. Among the compounds, compound 5k showed the most potent biological activity against HEPG2 cancer cell line (IC(50)=0.81 μM for HEPG2 and IC(50)=0.93 μM for MetAP2), which was comparable to the positive control. Docking simulation by positioning compound 5k into the MetAP2 structure active site was performed to explore the possible binding model. The results of apoptosis and Western-blot assay demonstrated that compound 5k possessed good antitumor activity against HEPG2 cancer cell line. Therefore, compound 5k with potent inhibitory activity in tumor growth inhibition may be a potential antitumor agent against HEPG2 cancer cell.  相似文献   

20.
Two series of amides based on quinoline scaffold were designed and synthesized in search of photosynthesis inhibitors. The compounds were tested for their photosynthesis-inhibiting activity against Spinacia oleracea L. and Chlorella vulgaris Beij. The compounds lipophilicity was determined by the RP-HPLC method. Several compounds showed biological activity similar or even higher than that of the standard (DCMU). The structure-activity relationships are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号