首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An endogenous hydroxylated form of LHRH, (Hyp) LHRH, is able to displace LHRH bound to pituitary membrane preparations. In parallel, it stimulates release of both LH and FSH from pituitary cells in primary culture. The potency ratio of (Hyp)LHRH is approximately 1:20 and 1:5 with respect to the native decapeptide when peptidasic degradation is or is not inhibited. This correlates with a greater resistance of (Hyp) LHRH towards enzymatic degradation; in contrast to LHRH, the C-terminal (residues 6 to 10) end of (Hyp) LHRH is not degraded and generates C-terminal fragments which account for 64% of the LHRH immunoreactivity in extrahypothalamic areas as the hippocampus. Besides its weak gonadotropin releasing activity and its action or its localization in peripheral organs (placenta, gonads), a major role of the hydroxylated decapeptide may thus be to serve as a precursor of smaller active fragments on targets other than pituitary receptors.  相似文献   

2.
An in-vitro superfusion technique was used to study basal and depolarization-induced (32 mmol K+/l) release of LHRH from the mediobasal hypothalamus (MBH) of pullets at 8-25 weeks of age. Plasma LH concentrations and the incremental change (delta LH) after an i.v. injection of 1 or 15 micrograms synthetic ovine LHRH/kg body weight were also determined. Between 8 and 25 weeks of age, significant (P less than 0.01) increases in basal and depolarization-induced release of LHRH (93 and 330%, respectively) were accompanied by a significant (P less than 0.01) rise in the residual LHRH content of MBH tissue (152%), observations which suggest that the ability of the hypothalamus to synthesize and secrete LHRH increases as sexual maturation proceeds. However, plasma LH, which reached a maximum concentration of 2.05 +/- 0.43 micrograms/l at 15 weeks, fell significantly (P less than 0.05) to 1.14 +/- 0.05 micrograms/l at 25 weeks. Since delta LH in response to exogenous LHRH showed a marked and progressive decline between 12 and 20 weeks of age, the low plasma concentration of LH typical of the mature hen is probably attributable to a direct negative-feedback action of ovarian steroids on the anterior pituitary gland rather than to an impaired secretion of LHRH from the median eminence. It is suggested that a dramatic increase in the responsiveness of LHRH nerve terminals in the MBH to depolarization by 32 mmol K+/l between 20 and 25 weeks of age (mean age at onset of lay 21.9 weeks; range 19-25 weeks) may reflect the development of hypothalamic responsiveness to the positive feedback action of progesterone.  相似文献   

3.
In this report, we have reviewed recent information gathered by probing with a push-pull cannula (PPC) the in vivo activity of the suprachiasmatic nucleus (SCN), hypothalamus, and anterior pituitary gland of freely moving animals. In male and female rats, probing of the SCN with the PPC revealed distinct oscillatory patterns of 5-hydroxy indole-acetic acid (5-HIAA) output very much dependent on the position of the cannula. In males, it was also possible to demonstrate, for the first time, in vivo output of immunoreactive vasopressin (VP) most likely from the SCN. Interestingly, the output of VP was stimulated by local activation of probable 5-hydroxytryptamine (5-HT) terminals with 5-hydroxytryptophan (5-HTP), a precursor of 5-HT synthesis. Probing the hypothalamus of rats and rabbits revealed that the in vivo release of luteinizing hormone-releasing hormone (LHRH) (frequency and amplitude of the LHRH signal) can be altered by administration of estrogen to ovariectomized rats; in both species, progesterone stimulated the amplitude of the LHRH signal, but only when this steroid was infused in pulses--the physiological mode of circulating progesterone in the rat. Further, in male rabbits, pulses of progesterone did not stimulate LHRH release. Last, probing the anterior pituitary with the PPC revealed that a series of push-pull perfusions could be performed in the same animal under different experimental conditions for nearly 60 days of experimentation. It also resolved the apparent paradox that after castration, decreased instead of increased activity of the neural LHRH apparatus was noticed when the PPC was positioned in the hypothalamus. Moving the PPC to the anterior pituitary revealed that castration was accompanied by an increase in the amplitude and frequency of the LHRH signals arriving in the anterior pituitary of castrated male rats. This mode of operation of the LHRH pulse generator is clearly compatible with the mode of luteinizing hormone (LH) release in gonadectomized animals. Finally, based on these results, a hypothetical model of the operation of the LHRH pulse generator has been proposed.  相似文献   

4.
The ontogenic development of some hypothalamic neuropeptides: luteinizing hormone releasing hormone (LHRH); somatostatin (SRIF) and neurophysin (NF) and their localization in the hypothalamus of fetuses in different stages of the fetal life were studied by immunoperoxidase method. It was found that differentiation of the neurons which produce the examined hormones begins in the midstage of pregnancy. LHRH is stored in the nerve terminals of the median eminence (ME) and organum vasculosum of the lamina terminalis (OVLT) since 72 day of gestation and its amount gradually increases with the development of the embryo. In this stage a few immunoreactive (ir) LHRH perikarya appear but they are most numerous in the last days of pregnancy (110 day). They are localized in the most anterior periventricular parts of the hypothalamus, area preoptica, diagonal band of Broca and very rare in the medial-basal hypothalamus. Somatostatin is produced in the separate neuronal system and appears in the last days of fetal life. Neurophysin is present in both magnocellular nuclei in 72 day-old fetuses, but at the end of gestation it is seen also in some preoptico-septal region.  相似文献   

5.
Sex steroids and the control of LHRH secretion   总被引:2,自引:0,他引:2  
Gonadal steroids are important hormonal signals that regulate the activity of LHRH synthesizing and releasing neurons. Aside from a direct effect through the feedback mechanisms exerted at hypothalamic and/or anterior pituitary level, gonadal steroids may modify the rhythmic LHRH release by modulating other systems affecting LHRH neurons. 1. In ovariectomized E2-treated female rats, progesterone is able to evoke LHRH release from the perifused hypothalamus without affecting LH and FSH release. 2. Excitatory amino acids (EAA) and their related analogs (NMDA and kainate) are known to stimulate LH release in young rats. When tested in a perifusion system on hypothalamic and anterior pituitary tissues, they differentially stimulate the release of LHRH (NMDA) and of LH (KA); their effect on both structures is markedly reduced following orchidectomy. It appears that gonadal steroids might exert a facilitatory action on the neurosecretory activity of LHRH neurons as well as a modulatory influence on the effect of EAA.  相似文献   

6.
Structures of (Pro‐Pro‐Gly)4‐Xaa‐Yaa‐Gly‐(Pro‐Pro‐Gly)4 (ppg9‐XYG) where (Xaa, Yaa) = (Pro, Hyp), (Hyp, Pro) or (Hyp, Hyp) were analyzed at high resolution using synchrotron radiation. Molecular and crystal structures of these peptides are very similar to those of the (Pro‐Pro‐Gly)9 peptide. The results obtained in this study, together with those obtained from related compounds, indicated the puckering propensity of the Hyp in the X position: (1) Hyp(X) residues involved in the Hyp(X):Pro(Y) stacking pairs prefer the down‐puckering conformation, as in ppg9‐OPG, and ppg9‐OOG; (2) Hyp(X) residues involved in the Hyp(X):Hyp(Y) stacking pairs prefer the up‐puckering conformation if there is no specific reason to adopt the down‐puckering conformation. Water molecules in these peptide crystals are classified into two groups, the 1st and 2nd hydration waters. Water molecules in the 1st hydration group have direct hydrogen bonds with peptide oxygen atoms, whereas those in the 2nd hydration group do not. Compared with globular proteins, the number of water molecules in the 2nd hydration shell of the ppg9‐XYG peptides is very large, likely due to the unique rod‐like molecular structure of collagen model peptides. In the collagen helix, the amino acid residues in the X and Y positions must protrude outside of the triple helix, which forces even the hydrophobic side chains, such as Pro, to be exposed to the surrounding water molecules. Therefore, most of the waters in the 2nd hydration shell are covering hydrophobic Pro side chains by forming clathrate structures. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 361–372, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
Chen T  Shaw C 《Peptides》2003,24(8):1123-1130
Nine bradykinin-related peptides were identified in Phyllomedusa sauvagei skin secretion using QTOF MS/MS fragmentation sequencing. The major peptides were (Thr6)-bradykinin, (Hyp3, Thr6)-bradykinin, (Thr6)-phyllokinin and (Hyp3, Thr6)-phyllokinin. The phyllokinins occurred in both sulfated and non-sulfated forms. All (Thr6)-substituted bradykinins/phyllokinins could be generated from a common precursor by differential post-translational processing and modification. The open-reading frame of the cloned precursor cDNA consisted of 62 amino acid residues with a single bradykinin/phyllokinin coding sequence located at the C-terminus. Structural features included a Glu-Arg processing site at the N-terminus of the bradykinin/phyllokinin domain and the absence of an acidic amino acid residue adjacent to the C-terminal Tyr residue in the phyllokinins. However, the neutral amino acid residue (Ile) at position -1 and the basic amino acid residue (Arg) at position -2 from the Tyr residue, constitute a sulfation motif previously identified only in a protochordean.  相似文献   

8.
The collagen triple helix is composed of three polypeptide strands, each with a sequence of repeating (Xaa-Yaa-Gly) triplets. In these triplets, Xaa and Yaa are often tertiary amides: L-proline (Pro) and 4(R)-hydroxy-L-proline (Hyp). To determine the contribution of tertiary amides to triple-helical stability, Pro and Hyp were replaced in synthetic collagen mimics with a non-natural acyclic tertiary amide: N-methyl-L-alanine (meAla). Replacing a Pro or Hyp residue with meAla decreases triple-helical stability. Ramachandran analysis indicates that meAla residues prefer to adopt straight phi and psi angles that are dissimilar from those of the Pro and Hyp residues in the collagen triple helix. Replacement with meAla decreases triple-helical stability more than does replacement with Ala. All of the peptide bonds in triple-helical collagen are in the trans conformation. Although an Ala residue greatly prefers the trans conformation, a meAla residue exists as a nearly equimolar mixture of trans and cis conformers. These findings indicate that the favorable contribution of Pro and Hyp to the conformational stability of collagen triple helices arises from factors other than their being tertiary amides.  相似文献   

9.
Inferences regarding biosynthesis of LHRH in rats are made from immunocytochemical studies using LHRH antisera with varied and specific binding requirements. Immunoreactive perikarya were observed with antisera that could bind putative large molecular weight precursors of LHRH. No cells were detected with an antiserum that requires free decapeptide terminals and could not bind extended precursors. No such differential immunoreactivity was apparent in neuronal processes and neurovascular terminals. Features of intracellular processing of LHRH which can be inferred from these immunocytochemical data are: (1) the decapeptide is initially synthesized within neuronal cell bodies as a larger molecular weight peptide, extended at both the N- and C-terminals; (2) processing occurs as the newly synthesized material is transported along neuronal processes; and (3) intermediate molecular forms are converted to the active decapeptide primarily in distal portions of neuronal fibers, including the neurovascular terminal. Immunocytochemical observations in other mammalian species (humans, monkeys, ferrets and bats) allow us to further suggest that the dynamics of maturation of this hormone may differ among mammals.  相似文献   

10.
Hydroxylation of proline residue occurs in specific peptides and proteins derived from plants and animals, but the functional role of this modification has been characterized primarily in collagen. Marine cone snails produce disulfide-rich peptides that have undergone a plethora of posttranslational modifications, including proline hydroxylation. Although Conus snails extensively utilize proline hydroxylation, the consequences of this modification remain largely unexplored. In this work, we investigated the function of 4-hydroxyproline (Hyp) in conotoxins from three distinct gene families: mu-, omega-, and alpha-conotoxins. Analogues of mu-GIIIA, omega-MVIIC, alpha-GI, and alpha-ImI were synthesized with either Pro or Hyp, and their in vitro oxidative folding and biological activity were characterized. For GIIIA, which naturally contains three Hyp residues, the modifications improved the ability to block NaV1.4 sodium channels but did not affect folding. In contrast, the presence of Hyp in MVIIC had a significant impact on the oxidative folding but not on the biological activity. The folding yields for the MVIIC[Pro7Hyp] analogue were approximately 2-fold higher than for MVIIC under a variety of optimized oxidation conditions. For alpha-conotoxins ImI and GI, the hydroxylation of the conserved Pro residue improved their folding but impaired their activities against target receptors. Since prolyl-4-hydroxylase and protein disulfide isomerase coexist as a heterotetramer in the ER, we discuss the effects of Hyp on the folding of conotoxins in the context of cis-trans isomerization of Pro and Hyp. Taken together, our data suggest that proline hydroxylation is important for both in vitro oxidative folding and the bioactivity of conotoxins.  相似文献   

11.
Summary Using the immunoperoxidase method, the effect of the anterior deafferentations on the (1) LHRH-neuronal system in the hypothalamus and (2) gonadotropic cells in the adenohypophysis of the ewe were investigated. Two kinds of the anterior deafferentations were placed in the hypothalamus of cycling ewes. The first was performed at the level of caudal border of the chiasma opticum (CB deafferentation) and separated the medio-basal hypothalamus (MBH) from the anterior hypothalamic area (AHA). The second, was placed above the midline of the optic chiasma (MB deafferentation) and detached the AHA from the area praeoptica (AP). Estrous cycles and ovulation ceased in all CB-deafferentation. Immunocytochemical observations revealed a complete lack of LHRH-material both in the hypothalamic nuclei and in all parts of the median eminence (ME) and disappearance of LH-cells in the pituitary gland. In MB deafferented animals, only a diminished density of LHRH-material occurred in the rostral and central parts of the ME, but the ewes continued estrous cycles. Furthermore, numerous LHRH-axons and some LHRH-perikarya were visible in the regions of the AP and AHA. From these results the author is of the opinion, that in the ewe, principally AHA, but not MBH, retains the ability to produce LHRH. Difficulties in staining LHRH-perikarya suggest that in this species LHRH may be synthesized in an immunologically inactive (prohormonal) form.  相似文献   

12.
The acute and chronic effects of two LHRH agonists on reproductive endocrine target organs were examined in female rats. Animals were injected twice daily with [(ImBzl)-D-His6,Pro9-NEt]LHRH (histrelin) or [D-Trp6,Pro9-NEt]LHRH for 1, 3, 5, 7, 11 or 28 days at 1, 10, 100 or 1000 micrograms/kg/day beginning in the luteal phase. The responses observed with the two agonists were similar. An initial stimulatory phase was observed on the first day of treatment with substantial increases in serum LH and progesterone levels. A significant diminution of hormone response was seen by day 3. Only 1000 micrograms/kg abolished the pituitary LH response at later treatment periods. Estrous cyclicity, ovarian and uterine weight, and progesterone and estradiol levels were inhibited in a time and dose dependent manner. The results demonstrate target organ sensitivity differences. In contrast to the relatively high doses needed to inhibit the pituitary response and decrease ovarian weight, doses as low as 1 microgram/kg were sufficient to decrease uterine weight. If these findings extrapolate to humans, it may be that conditions in which the desired therapeutic action is suppression of uterine tissue, may be treated with lower doses of LHRH agonists than conditions requiring complete gonadal suppression.  相似文献   

13.
Glutathione content and glutamyl transpeptidase activity in different regions of adult female rat brain were determined at 10 and 30 min following intraventricular injection of LHRH and somatostatin. Hypothalamic glutathione levels were significantly elevated at 10 and 30 min after a single injection of a 0.1 micrograms dose of LHRH. On the contrary, glutathione levels significantly decreased in the hypothalamus, cerebral cortex and cerebellum at 10 and 30 min after 0.5 or 1 microgram dose. However, significant decrease in brain stem glutathione was evident at 30 min after 0.5 microgram and 10 min after the 1 microgram dose. Somatostatin at doses of 0.5 microgram and 1 microgram significantly decreased glutathione levels in all four brain regions both at 10 and 30 min following injection into the 3rd ventricle. Gamma-glutamyl transpeptidase activity in the hypothalamus and cerebral cortex was significantly elevated after intraventricular injection of LHRH. However, a significant increase in gamma-glutamyl transpeptidase activity in cerebellum and brain stem was seen only with 0.5 and 1 micrograms doses of LHRH. Somatostatin also significantly increased gamma-glutamyl transpeptidase activity in hypothalamus, cerebral cortex, brain stem and cerebellum. The decrease in glutathione levels with corresponding increase in gamma-glutamyl transpeptidase activity after intraventricular administration of LHRH and somatostatin suggests a possible interaction between glutathione and hypothalamic peptides.  相似文献   

14.
Summary 1. Two LHRH neuronal cell lines were developed by targeted tumorigenesis of LHRH neuronsin vivo. These cell lines (GN and GT-1 cells) represent a homogeneous population of neurons. GT-1 cells have been further subcloned to produce the GT1-1, GT1-3, and GT1-7 cell lines. While considerable information is accumulating about GT-1 cells, very little is currently known about the characteristics and responses of GN cells.2. By both morphological and biochemical criteria, GT-1 cells are clearly neurons. All GT-1 cells immunostain for LHRH and the levels of prohormone, peptide intermediates, and LHRH in the cells and medium are relatively high.3. GT-1 cells biosynthesize, process, and secrete LHRH. Processing of pro-LHRH appears to be very similar to that reported for LHRH neuronsin vivo. At least four enzymes may be involved in processing the prohormone to LHRH.4. LHRH neurons are unique among the neurons of the central nervous system because they arise from the olfactory placode and grow back into the preoptic-anterior hypothalamic region of the brain. Once these neurons reach this location, they send their axons to the median eminence. With respect to the immortalized neurons, GN cells were arrested during their transit to the brain. In contrast, GT-1 cells were able to migrate to the preoptic-anterior hypothalamic region but were unable correctly to target their axons to the median eminence. These problems in migration and targeting appear to be due to expression of the simian virus T-antigen.5. While GT-1 cells are a homogeneous population of neurons, they are amenable to coculture with other types of cells. Coculture experiments currently under way should help not only to reveal some of the molecular and cellular cues that are important for neuronal migration and axonal targeting, but they should also highlight the nature of the cellular interactions which normally occurin situ.6. GT-1 cells spontaneously secrete LHRH in a pusatile manner. The interpulse interval for LHRH from these cells is almost identical to that reported for release of LH and LHRHin vivo. GT-1 cells are interconnected by both gap junctions and synapses. The coordination and synchronization of secretion from these cells could occur through these interconnections, by feedback from LHRH itself, and/or by several different compounds that are secreted by these cells. One such compound is nitric oxide.7. GT-1 cells have Na+, K+, Ca2+, and Cl channels. Polymerase chain reaction experiments coupled with Southern blotting and electrophysiological recordings reveal that GT-1 cells contain at least five types of Ca2+ channels. R-type Ca2+ channels appear to be the most common type of channel and this channel is activated by phorbol esters in the GT-1 cells.8. LHRH is secreted from GT-1 cells in response to norepinephrine, dopamine, histamine, GABA (GABA-A agonists), glutamate, nitric oxide, neuropeptide Y, endothelin, prostaglandin E2, and activin A. Phorbol esters are very potent stimulators of LHRH secretion. Inhibition of LHRH release occurs in response to LHRH, GABA (GABA-B agonists), prolactin, and glucocorticoids.9. Compared to secretion studies, far fewer agents have been tested for their effects on gene expression. All of the agents which have been tested so far have been found either to repress LHRH gene expression or to have no effect. The agents which have been reported to repress LHRH steady-state mRNA levels include LHRH, prolactin, glucocorticoids, nitric oxide, and phorbol esters. While forskolin stimulates LHRH secretion, it does not appear to have any effect on LHRH mRNA levels.  相似文献   

15.
Using the immunoperoxidase method, luteinizing hormone releasing hormone (LHRH) and somatostatin (SRIF) were demonstrated in the hypothalamus of fetal sheep. Both hormones were found in the perikarya at about day 60 of fetal life, i.e., at the end of the first half of pregnancy. Immunoreactive LHRH (irLHRH) perikarya were situated in the vicinity of the organum vasculosum of the lamina terminalis (OVLT), i.e., in the medial preoptic nucleus and in the nucleus of the diagonal band of Broca. They were scattered and generally sparse in these areas. In the earliest stages of fetal life (60, 75, 90 days of gestation) irSRIF perikarya grouped in the ventromedial nucleus and in the lateral preoptic nucleus, were very numerous. In the oldest fetuses (120 and 135 days of gestation) they had disappeared from these nuclei but could be found in some extrahypothalamic regions--the amygdala, septo-olfactory area and sometimes in the anterior periventricular zone of the hypothalamus. Neither irLHRH nor irSRIF material were stored in the nerve terminals of the external layer of the median eminence (ME) before day 75 of gestation. In all developmental stages examined, irLHRH material in the ME was very scarce whereas irSRIF material very aboundant.  相似文献   

16.
Hypothalamic LHRH, pituitary LH and plasma LH levels were measured in rats of both sexes from day 5-60 after birth. The content of hypothalamic LHRH was very high in one-week-old male and female rats. It declined gradually till day 17 in the female rat and sharply on day 10 in the male rat. Subsequently the content of hypothalamic LHRH increased and showed peak values on day 25 in the female rat and on day 45 in the male rat. It decreased markedly at respective times of puberty in both sexes (day 37 in the female rat and day 52-60 in the male rat). Results of the study suggest that maturation of hypothalamo-hypophyseal-axis proceeds in three distinct stages. Observations on days 17, 25 and 37 in the female rat and on days 5, 7, 10 and 22 in the male rat clearly show an inverse relationship between hypothalamic LHRH and plasma LH and a parallel relationship between pituitary and plasma LH. Marked decline in the content of hypothalamic LHRH at respective times of puberty in both sexes indicates that the release of threshold levels of LHRH from the hypothalamus may apparently be the event initiating the pubertal changes in rat.  相似文献   

17.
Hemi-pituitary glands of ovariectomized rats were superfused for 4 h with either LHRH or the analog buserelin (HOE 766) at several concentrations, and thereafter with medium only for another 1.5 h. In a further experiment glands were exposed for 2.5 h to LHRH or buserelin at a single concentration (5 ng/ml) and subsequently for another 2.5 h to either the same agonist (LHRH or buserelin) alone (5 ng/ml), the agonist plus an LHRH-antagonist (ORG 30093, 1000 ng/ml), the LHRH- antagonist alone, or medium alone. LHRH and buserelin stimulated gonadotropin release equally well. After cessation of this stimulation, the gonadotropin release by the buserelin-treated pituitary glands and the glands, treated with the highest dose of LHRH (1000 ng/ml), continued, while the release by the glands, treated with the lower doses of LHRH, declined. The LHRH-antagonist completely blocked the release of LH, stimulated by buserelin or LHRH, as well as the prolonged activation of the release, caused by buserelin pre-treatment. In a superfusion experiment with pituitary cell aggregates of 14-day-old intact female rats, buserelin stimulated the release of LH much more effectively than LHRH itself. Moreover, the release caused by buserelin declined more slowly after cessation of the stimulation. Finally, in a pituitary cell monolayer culture the Kd's of LHRH, buserelin and the antagonist were determined as 4.7 X 10(-9) M, 2.4 X 10(-10) M and 4.6 X 10(-9) respectively. It was concluded that the estimates of the potencies of LHRH and buserelin depend on the choice of the test-system. It is suggested that the long duration of action of buserelin is at least partly due to prolonged binding to the LHRH-receptor.  相似文献   

18.
Mitochondrial-synaptosomal fractions (P2) from the basomedial hypothalamus of adult ovariectomized rats were employed to study the effects of estradiol benzoate (EB) and progesterone (P) on the release of luteinizing hormone-releasing hormone (LHRH). Treatment of ovariectomized rats with 5 or 50 g of EB significantly reduced the total LHRH released from P2 under both control and K+-stimulated conditions. Furthermore, rats given 50 g EB demonstrated cyclic variations in the magnitude of inhibition of LHRH release. Comparison of LHRH release from P2 of rats sacrificed at 0900 hr with that from those sacrificed at 1500 hr revealed a small persistent facilitation of LHRH release each afternoon. This facilitation, associated with an increase in the soluble component of LHRH release, was absent when rats also received 5 mg of P. No effects on LHRH release were observed when 17-estradiol alone or when P was applied to P2 in vitro. The data show that the regulatory effects of estrogen and progesterone given in vivo on LHRH secretion can be observed in a subcellular fraction of the hypothalamus containing neurosecretory cell terminals.Supported by grants from the NIH, HD08389 and NS11753.U.S.P.H.S. Career Development Awardee, K04-HD00022  相似文献   

19.
Previous studies from many laboratories have failed to demonstrate a significant synaptic input to luteinizing hormone-releasing hormone (LHRH) neurons in the rodent or primate hypothalamus/preoptic area. Having now developed immunocytochemical procedures that result in excellent ultrastructural preservation as well as in retention of antigenicity (Silverman AJ: J Comp Neurol 227:452, 1984), we have reinvestigated the question of the organization of the synaptic arrangements of LHRH neurons in the medial preoptic area of the guinea pig. Afferent inputs to these LHRH neurons include several varieties of axo-somatic and axo-dendritic synapses. Presynaptic terminals contain either round clear vesicles or a mixture of round and flattened vesicles. Most of these terminals, especially when serial sections are examined, contain dense-core granules. Well-defined synaptic clefts are evident and postsynaptic densities can be identified for asymmetrical connections. However, the presence of reaction product in the postsynaptic structure makes it difficult to categorize symmetrical terminals. In addition to these classical inputs, LHRH neurons also enter into complex heterodox synaptic relationships with their neighbors, including somato-dendritic and dendro-dendritic synapses in which the LHRH neuron can be either the pre- or postsynaptic element. These results suggest that complex synaptic relationships might account for the multiple levels of regulation of neurohormone release.  相似文献   

20.
S Wray  B H G?hwiler  H Gainer 《Peptides》1988,9(5):1151-1175
Luteinizing hormone releasing hormone (LHRH) neurons from the preoptic area (POA)/hypothalamus of the postnatal rat were cultured for up to 7 weeks using a slice explant roller culture technique. The slices thinned to quasi-monolayers, but maintained organotypic distributions of large numbers of immunocytochemically identifiable LHRH, neurotensin, tyrosine hydroxylase, neurophysin and corticotropin releasing hormone-containing neurons. The distribution, survival and morphology of LHRH cells in co-cultures with brainstem and anterior pituitary was quantitated, and found to be similar to that observed in single cultures. LHRH fibers grew into either pituitary or brainstem tissue, however when all three tissues were co-cultured, LHRH fibers preferentially invaded the pituitary. LH immunoreactive anterior pituitary gonadotropes were maintained only in co-cultures containing POA/hypothalamic slices, and addition of an LHRH antagonist in such cultures, inhibited LH immunoreactivity in the gonadotropes. This slice explant roller culture method effectively maintains the cyto- and chemoarchitecture and functional properties of the LHRH system for long periods in vitro and should provide excellent models for studying the interactive and molecular characteristics of postnatal LHRH neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号