首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid rafts and the regulation of exocytosis   总被引:13,自引:0,他引:13  
Exocytosis is the process whereby intracellular fluid-filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid-rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction.  相似文献   

2.
The binding of alpha-SNAP to the membrane proteins syntaxin, SNAP-25, and synaptobrevin leads to the recruitment of the N-ethylmaleimide-sensitive fusion protein (NSF). ATP hydrolysis by NSF has been suggested to drive conformational changes in one or more of these membrane proteins that are essential for regulated exocytosis. Functional evidence for a role of alpha-SNAP in exocytosis in adrenal chromaffin cells comes from the ability of this protein to stimulate Ca(2+)-dependent exocytosis in digitonin-permeabilized cells. Here we examine the effect of a series of deletion mutants of alpha-SNAP on exocytosis, and on the ability of alpha-SNAP to interact with NSF, to define essential domains involved in protein-protein interactions in exocytosis. Deletion of extreme N- or C-terminal regions of alpha-SNAP produced proteins unable to bind to syntaxin or to stimulate exocytosis, suggesting that these domains participate in essential interactions. Deletion of C-terminal residues abolished the ability of alpha-SNAP to bind NSF. In contrast, deletion of up to 120 N-terminal residues did not prevent the binding of NSF to immobilized alpha-SNAP and such mutants were also able to stimulate the ATPase activity of NSF. These results suggest that the C-terminus, but not the N-terminus, of alpha-SNAP is crucial for interactions with NSF. The involvement of the C-terminus of alpha-SNAP, which contains a predicted coiled-coil domain, in the binding of both syntaxin and NSF would place the latter two proteins in proximity in a ternary complex whereupon the energy derived from ATP hydrolysis by NSF could induce a conformational change in syntaxin required for exocytosis to proceed.  相似文献   

3.
Ca2+-dependent activator protein for secretion (CAPS) is a cytosolic protein essential for the Ca2+-dependent fusion of dense-core vesicles (DCVs) with the plasma membrane and the regulated secretion of a subset of neurotransmitters. The mechanism by which CAPS functions in exocytosis and the means by which it associates with target membranes are unknown. We identified two domains in CAPS with distinct membrane-binding properties that were each essential for CAPS activity in regulated exocytosis. The first of these, a centrally located pleckstrin homology domain, exhibited three properties: charge-based binding to acidic phospholipids, binding to plasma membrane but not DCV membrane, and stereoselective binding to phosphatidylinositol 4,5-bisphosphate. Mutagenesis studies revealed that the former two properties but not the latter were essential for CAPS function. The central pleckstrin homology domain may mediate transient CAPS interactions with the plasma membrane during Ca2+-triggered exocytosis. The second membrane association domain comprising distal C-terminal sequences mediated CAPS targeting to and association with neuroendocrine DCVs. The CAPS C-terminal domain was also essential for optimal activity in regulated exocytosis. The presence of two membrane association domains with distinct binding specificities may enable CAPS to bind both target membranes to facilitate DCV-plasma membrane fusion.  相似文献   

4.
Xenopus oocytes undergo dynamic structural changes during maturation and fertilization. Among these, cortical granule exocytosis and compensatory endocytosis provide effective models to study membrane trafficking. This study documents an important role for myosin 1e in cortical granule exocytosis. Myosin 1e is expressed at the earliest stage that cortical granule exocytosis can be detected in oocytes. Prior to exocytosis, myosin 1e relocates to the surface of cortical granules. Overexpression of myosin 1e augments the kinetics of cortical granule exocytosis, whereas tail-derived fragments of myosin 1e inhibit this secretory event (but not constitutive exocytosis). Finally, intracellular injection of myosin 1e antibody inhibits cortical granule exocytosis. Further experiments identified cysteine string proteins as interacting partners for myosin 1e. As constituents of the membrane of cortical granules, cysteine string proteins are also essential for cortical granule exocytosis. Future investigation of the link between myosin 1e and cysteine string proteins should help to clarify basic mechanisms of regulated exocytosis.  相似文献   

5.
We investigated, using guinea-pig spermatozoa as a model, whether phospholipase A2 (PLA2) is involved in progesterone or zona pellucida (ZP)-stimulated acrosomal exocytosis, if progesterone enhances ZP-induced activation of PLA2, and mechanisms underlying PLA2 regulation. Spermatozoa were capacitated and labeled in low Ca2+ medium with [14C]choline chloride or [14C]arachidonic acid, washed, and then exposed to millimolar Ca2+ and progesterone and/or ZP. Each agonist stimulated decrease of phosphatidylcholine (PC) and release of arachidonic acid and lysoPC, indicative of PLA2 activation. Aristolochic acid (a PLA2 inhibitor) abrogated lipid changes and exocytosis, indicating that these lipid changes are essential for exocytosis. Exposure of spermatozoa to submaximal concentrations of both progesterone and ZP resulted in a synergistic increase of arachidonic acid and lysoPC releases, and exocytosis, suggesting that, under natural conditions, both agonists interact to bring about acrosomal exocytosis. Progesterone-induced PLA2 activation appears to be mediated by a GABA(A)-like receptor, because bicuculline (a GABA(A) receptor antagonist) blocked arachidonic acid release and exocytosis. In agreement with this, GABA mimicked progesterone actions. ZP-induced activation of PLA2 seemed to be transduced via G(i) proteins because pertussis toxin blocked arachidonic acid release and acrosomal exocytosis. PLA2 may be regulated by PKC because progesterone- or ZP-induced release of arachidonic acid was blocked by the PKC inhibitors staurosporine or chelerythrine chloride. PLA2 could also be regulated by the cAMP-PKA pathway; inclusion of the PKA inhibitor 14-22 amide or H-89 led to a reduction in arachidonic acid release or exocytosis after progesterone or ZP. Taken together, these results suggest that PLA2 plays an essential role in progesterone or ZP-stimulated exocytosis with progesterone priming ZP action.  相似文献   

6.
Postsynaptic complexin controls AMPA receptor exocytosis during LTP   总被引:1,自引:0,他引:1  
Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a protein that regulates neurotransmitter release via binding to SNARE complexes, is essential for AMPAR exocytosis during LTP but not for the constitutive AMPAR exocytosis that maintains basal synaptic strength. The regulated postsynaptic AMPAR exocytosis during LTP requires binding of complexin to SNARE complexes. In hippocampal neurons, presynaptic complexin acts together with synaptotagmin-1 to mediate neurotransmitter release. However, postsynaptic synaptotagmin-1 is not required for complexin-dependent AMPAR exocytosis during LTP. These results suggest?a complexin-dependent molecular mechanism for regulating AMPAR delivery to synapses, a mechanism that is surprisingly similar to presynaptic exocytosis but controlled by regulators other than synaptotagmin-1.  相似文献   

7.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

8.
Ca(2+) influx through plasma membrane wounds triggers a rapid-repair response that is essential for cell survival. Earlier studies showed that repair requires the exocytosis of intracellular vesicles. Exocytosis was thought to promote resealing by 'patching' the plasma membrane lesion or by facilitating bilayer restoration through reduction in membrane tension. However, cells also rapidly repair lesions created by pore-forming proteins, a form of injury that cannot be resealed solely by exocytosis. Recent studies indicate that, in cells injured by pores or mechanical abrasions, exocytosis is followed by lesion removal through endocytosis. Describing the relationship between wound-induced exocytosis and endocytosis has implications for the understanding of muscular degenerative diseases that are associated with defects in plasma membrane repair.  相似文献   

9.
The extents and modes of lysosomal fusion with phagocytic vesicles (endo-fusion) and with plasma membranes (exocytosis) were examined simultaneously in non-phagocytosing guinea pig polymorphonuclear leukocytes (PMNs). PMNs were allowed to phagocytose paraffin oil emulsion (POE) in Krebs-Ringer phosphate buffer (KRpB) at 37 °C for 5 min, then washed free of non-ingested POE and suspended in KRpB or KRpB supplemented with 20% fetal calf serum (KRpB-FCS). Reincubation of PMNs in KRpB resulted in fusion of lysosomes with phagocytic vesicles (endo-fusion), but not in release of lysosomal β-glucuronidase (exocytosis). Reincubation of PMNs in KRpB-FCS resulted in both endo-fusion and exocytosis simultaneously. FCS seems to be essential for initiation of exocytosis in this system. Addition of 10 μg/ml cytochalasin B (CB) to suspensions of PMNs in KRpB-FCS increased the extent of exocytosis but reduced that of endo-fusion. Other promotors for exocytosis, such as complement-activated zymosan (ZC) or calcium ionophore A23187, also enhanced exocytosis and inhibited endo-fusion to some degrees. So, endo-fusion seemed to be partially inhibited by simultaneous exocytosis. The effect of endo-fusion on subsequent exocytosis was studied in two ways and the results suggest that exocytosis was not so much influenced by endo-fusion as endo-fusion was influenced by exocytosis, but it was rather sensitive to the level of phagocytosis. In this work, we developed a new experimental system in which exocytosis and endo-fusion proceed simultaneously in non-phagocytosing cells in response to the incubation conditions. Similarities and differences in lysosomal fusion in endo-fusion and exocytosis are discussed.  相似文献   

10.
We have investigated the role of protein phosphorylation in the control of exocytosis in sea urchin eggs by treating eggs with a thio-analogue of ATP. ATP gamma S (adenosine 5'-O-3-thiotriphosphate) is a compound which can be used as a phosphoryl donor by protein kinases, leading to irreversible protein thiophosphorylation (Gratecos, D., and E.H. Fischer. 1974. Biochem. Biophys. Res. Commun. 58:960-967). Microinjection of ATP gamma S inhibits cortical granule exocytosis, but has no effect on the sperm-egg signal transduction mechanisms which normally cause exocytosis by generating an increase in [Ca2+]i. ATP gamma S requires cytosolic factors for its inhibition of cortical granule exocytosis: it does not affect exocytosis when applied directly to the isolated exocytotic apparatus. Our data suggest that ATP gamma S irreversibly inhibits exocytosis via thiophosphorylation of proteins associated with the egg cortex. We have identified two thiophosphorylated proteins (33 and 27 kD) that are associated with the isolated exocytotic apparatus. They may mediate the inhibition of exocytosis by ATP gamma S. In addition, we show that okadaic acid, an inhibitor of phosphoprotein phosphatases, prevents cortical granule exocytosis at fertilization without affecting calcium mobilization. Like ATP gamma S, okadaic acid has no effect on exocytosis in vitro. Our results suggest that an inhibitory phosphoprotein can obstruct calcium-stimulated exocytosis in sea urchin eggs; on the other hand, they do not readily support the idea that a protein phosphatase is an essential component of the mechanism controlling exocytosis.  相似文献   

11.
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP25) and the vesicle SNARE protein vesicle-associated membrane protein (VAMP) are essential for a late Ca(2+)-dependent step in regulated exocytosis, but their precise roles and regulation by Ca(2+) are poorly understood. Botulinum neurotoxin (BoNT) E, a protease that cleaves SNAP25 at Arg(180)-Ile(181), completely inhibits this late step in PC12 cell membranes, whereas BoNT A, which cleaves SNAP25 at Gln(197)-Arg(198), is only partially inhibitory. The difference in toxin effectiveness was found to result from a reversal of BoNT A but not BoNT E inhibition by elevated Ca(2+) concentrations. BoNT A treatment essentially increased the Ca(2+) concentration required to activate exocytosis, which suggested a role for the C terminus of SNAP25 in the Ca(2+) regulation of exocytosis. Synaptotagmin, a proposed Ca(2+) sensor for exocytosis, was found to bind SNAP25 in a Ca(2+)-stimulated manner. Ca(2+)-dependent binding was abolished by BoNT E treatment, whereas BoNT A treatment increased the Ca(2+) concentration required for binding. The C terminus of SNAP25 was also essential for Ca(2+)-dependent synaptotagmin binding to SNAP25. syntaxin and SNAP25.syntaxin.VAMP SNARE complexes. These results clarify classical observations on the Ca(2+) reversal of BoNT A inhibition of neurosecretion, and they suggest that an essential role for the C terminus of SNAP25 in regulated exocytosis is to mediate Ca(2+)-dependent interactions between synaptotagmin and SNARE protein complexes.  相似文献   

12.
Many secretory cells utilize a GTP-dependent pathway, in addition to the well characterized Ca2+-dependent pathway, to trigger exocytotic secretion. However, little is currently known about the mechanism by which this may occur. Here we show the key signaling pathway that mediates GTP-dependent exocytosis. Incubation of permeabilized PC12 cells with soluble RalA GTPase, but not RhoA or Rab3A GTPases, strongly inhibited GTP-dependent exocytosis. A Ral-binding fragment from Sec5, a component of the exocyst complex, showed a similar inhibition. Point mutations in both RalA (RalA(E38R)) and the Sec5 (Sec5(T11A)) fragment, which abolish RalA-Sec5 interaction also abolished the inhibition of GTP-dependent exocytosis. Moreover, transfection with wild-type RalA, but not RalA(E38R), enhanced GTP-dependent exocytosis. In contrast the RalA and the Sec5 fragment showed no inhibition of Ca2+-dependent exocytosis, but cleavage of a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein by Botulinum neurotoxin blocked both GTP- and Ca2+-dependent exocytosis. Our results indicate that the interaction between RalA and the exocyst complex (containing Sec5) is essential for GTP-dependent exocytosis. Furthermore, GTP- and Ca2+-dependent exocytosis use different sensors and effectors for triggering exocytosis whereas their final fusion steps are both SNARE-dependent.  相似文献   

13.
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.  相似文献   

14.
M Whitaker  M Aitchison 《FEBS letters》1985,182(1):119-124
Micromolar calcium ions stimulate both exocytosis and polyphosphoinositide hydrolysis in sea urchin egg plasma membrane in vitro. Strontium and barium ions also stimulate both processes equally. Magnesium ions reduce the calcium sensitivity of both. Neomycin, a drug which prevents phosphoinositide hydrolysis, inhibits exocytosis in vitro. We suggest that hydrolysis of plasma membrane phosphoinositides may be an essential step in the fusion of the secretory granule and plasma membranes.  相似文献   

15.
Chen WY  Ni Y  Pan YM  Shi QX  Yuan YY  Chen AJ  Mao LZ  Yu SQ  Roldan ER 《FEBS letters》2005,579(21):4692-4700
We investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process.  相似文献   

16.
Many of the proteins that function in regulated exocytosis have now been identified. Several proteins form part of a conserved core machinery that acts in many intracellular vesicular fusion steps and their essential roles confirmed by molecular genetic analysis. In addition, studies with adrenal chromaffin and PC12 cells have demonstrated the function of various proteins in regulated exocytosis and have permitted dissection of the stages of exocytosis in which they act. N-Ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAPs) are key proteins in exocytosis. Examination of their function has indicated that they have a predocking role most likely as molecular chaperones to prepare the docking/fusion machinery. The exact site and time of action in exocytosis of many of the other identified proteins are unknown. A major emphasis for the future will be analysis of the molecular physiology of regulated exocytosis to permit the assignment of functions to identified proteins in particular stages of the regulated exocytotic pathway. BioEssays 20 :328-335, 1998.© 1998 John Wiley & Sons, Inc.  相似文献   

17.
We applied the small interfering RNA (siRNA) technique and over-expression of a dominant-negative mutant to evaluate the role of SNAP-23, a non-neuronal isoform of SNAP-25, in constitutive exocytosis from HeLa cells. Although the protein level of SNAP-23 was reduced to less than 10% of the control value by siRNA directed against SNAP-23, exocytosis of SEAP (secreted alkaline phosphatase) was normal. Double knockdown of SNAP-23 and syntaxin-4 also failed to inhibit the secretion. Furthermore, over-expression of deltaC8-SNAP-23, a dominant-negative mutant of SNAP-23, did not abrogate SEAP secretion. These results suggest that SNAP-23 is not essential for constitutive exocytosis of SEAP.  相似文献   

18.
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.  相似文献   

19.
Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells   总被引:1,自引:0,他引:1  
SNAP25 and SNAP23 are plasma membrane SNARE proteins essential for regulated exocytosis in diverse cell types. Several recent studies have shown that these proteins are partly localized in lipid rafts, domains of the plasma membrane enriched in sphingolipids, and cholesterol. Here, we have employed cysteine mutants of SNAP25/SNAP23, which have modified affinities for raft domains, to examine whether raft association of these proteins is important for the regulation of exocytosis. PC12 cells were engineered that express the light chain of botulinum neurotoxin; in these cells all of the SNAP25 was cleaved to a lower molecular weight form, and regulated exocytosis was essentially absent. Exocytosis was rescued by expressing toxin-resistant SNAP25 or wild-type SNAP23, which is naturally toxin-resistant. Remarkably, a mutant SNAP25 protein with an increased affinity for rafts displayed a reduced ability to support exocytosis, whereas SNAP23 mutants with a decreased affinity for rafts displayed an enhancement of exocytosis when compared with wild-type SNAP23. The effects of the mutant proteins on exocytosis were dependent upon the integrity of the plasma membrane and lipid rafts. These results provide the first direct evidence that rafts regulate SNARE function and exocytosis and identify the central cysteine-rich region of SNAP25/23 as an important regulatory domain.  相似文献   

20.
Using rat mast cells permeabilized with streptolysin O we show that release of arachidonate generally occurs under similar but not identical conditions to those that cause exocytosis of beta-N-acetylglucosaminidase (hexosaminidase). Thus, hexosaminidase secretion and arachidonate release both require provision of Ca2+ together with a guanine nucleotide but exocytosis occurs at lower concentrations of both effectors. The kinetics of both processes are similar, with a delay in onset only when ATP is present. Arachidonate release occurs largely from a pool of arachidonyl phosphatidylcholine which appears to represent less than 1% of the total phosphatidylcholine of the cells. Despite the general similarity of the conditions causing exocytosis and arachidonate release, our results show that under some circumstances it is possible to obtain exocytosis without measurable release of arachidonate and that therefore phospholipase A2 activation is not an essential precursor of secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号