首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of the central nervous system is controlled by both intrinsic and extrinsic signals that guide neuronal migration to form laminae. Although defects in neuronal mobility have been well documented as a mechanism for abnormal laminar formation, the role of radial glia, which provide the environmental cues, in modulating neuronal migration is less clear. We provide evidence that loss of PTEN in Bergmann glia leads to premature differentiation of this crucial cell population and subsequently to extensive layering defects. Accordingly, severe granule neuron migration defects and abnormal laminar formation are observed. These results uncover an unexpected role for PTEN in regulating Bergmann glia differentiation, as well as the importance of time-dependent Bergmann glia differentiation during cerebellar development.  相似文献   

2.
Microglia are cells from non-neuronal lineages that reside in the central nervous system. In zebrafish, early macrophages migrate from the yolk sac to the brain and retina at 26-30 hour post fertilization (hpf) and transform into microglia at 55-60 hpf. The migration of macrophages into the central nervous system requires signaling by macrophage colony stimulating factor-1 receptor (csf-1r), which is encoded by the gene fms. In this study, we show that the targeted knockdown of csf-1r with morpholino oligonucleotides delays migration of macrophages from the yolk sac to the retina, and this delay in macrophage migration results in microphthalmia, delay in cell cycle withdrawal among retinal progenitors and the absence of neuronal differentiation. When embryos were allowed to survive beyond the time when morpholino-dependent translation inhibition is lost, microglia re-occupy the retina and neuronal differentiation partially recovers. Our data demonstrate that microglia are required for normal retinal growth and neurogenesis. This study provides new insight into the neurogenic role of microglia during retinal development in zebrafish.  相似文献   

3.
BACKGROUND: Myelin is critical for efficient axonal conduction in the vertebrate nervous system. Neuregulin (Nrg) ligands and their ErbB receptors are required for the development of Schwann cells, the glial cells that form myelin in the peripheral nervous system. Previous studies have not determined whether Nrg-ErbB signaling is essential in vivo for Schwann cell fate specification, proliferation, survival, migration, or the onset of myelination. RESULTS: In genetic screens for mutants with disruptions in myelinated nerves, we identified mutations in erbb3 and erbb2, which together encode a heteromeric tyrosine kinase receptor for Neuregulin ligands. Phenotypic analysis shows that both genes are essential for development of Schwann cells. BrdU-incorporation studies and time-lapse analysis reveal that Schwann cell proliferation and migration, but not survival, are disrupted in erbb3 mutants. We show that Schwann cells can migrate in the absence of DNA replication. This uncoupling of proliferation and migration indicates that erbb gene function is required independently for these two processes. Pharmacological inhibition of ErbB signaling at different stages reveals a continuing requirement for ErbB function during migration and also provides evidence that ErbB signaling is required after migration for proliferation and the terminal differentiation of myelinating Schwann cells. CONCLUSIONS: These results provide in vivo evidence that Neuregulin-ErbB signaling is essential for directed Schwann cell migration and demonstrate that this pathway is also required for the onset of myelination in postmigratory Schwann cells.  相似文献   

4.
5.
6.
Familial Dysautonomia (FD; Hereditary Sensory Autonomic Neuropathy; HSAN III) manifests from a failure in development of the peripheral sensory and autonomic nervous systems. The disease results from a point mutation in the IKBKAP gene, which encodes the IKAP protein, whose function is still unresolved in the developing nervous system. Since the neurons most severely depleted in the disease derive from the neural crest, and in light of data identifying a role for IKAP in cell motility and migration, it has been suggested that FD results from a disruption in neural crest migration. To determine the function of IKAP during development of the nervous system, we (1) first determined the spatial-temporal pattern of IKAP expression in the developing peripheral nervous system, from the onset of neural crest migration through the period of programmed cell death in the dorsal root ganglia, and (2) using RNAi, reduced expression of IKBKAP mRNA in the neural crest lineage throughout the process of dorsal root ganglia (DRG) development in chick embryos in ovo. Here we demonstrate that IKAP is not expressed by neural crest cells and instead is expressed as neurons differentiate both in the CNS and PNS, thus the devastation of the PNS in FD could not be due to disruptions in neural crest motility or migration. In addition, we show that alterations in the levels of IKAP, through both gain and loss of function studies, perturbs neuronal polarity, neuronal differentiation and survival. Thus IKAP plays pleiotropic roles in both the peripheral and central nervous systems.  相似文献   

7.
8.
9.
Glial cells   总被引:13,自引:0,他引:13  
The nervous system is built from two broad categories of cells, neurones and glial cells. The glial cells outnumber the neurones and the two cell types occupy a comparable amount of space in nervous tissue. The main glial cell types are, in the central nervous system, astrocytes and oligodendrocytes and, in the peripheral nervous system, Schwann cells, enteric glial cells and satellite cells. In the embryo, glial cells form a cellular framework that permits the development of the rest of the nervous system, and regulate neuronal survival and differentiation. The best known function of glia in the adult is the formation of myelin sheaths around axons thus allowing the fast conduction of signalling essential for nervous system function. Glia also maintain appropriate concentrations of ions and neurotransmitters in the neuronal environment. Increasing body of evidence indicates that glial cells are essential regulators of the formation, maintenance and function of synapses, the key functional unit of the nervous system.  相似文献   

10.
O Bernard  J Drago  H Sheng 《Neuron》1992,9(6):1217-1224
The N-myc and the L-myc proto-oncogenes are expressed during embryonal development mainly in the developing brain. Studies of their expression in single neuroepithelial cells revealed that neural precursors not yet committed to the glial or the neuronal lineage expressed both genes, but after lineage commitment they expressed either N-myc or L-myc. Moreover, enforced expression of L-myc in the neural precursor cell line 2.3D caused neuronal differentiation, while the expression of N-myc promoted glial differentiation. These results indicate that L-myc and N-myc play critical roles in lineage determination for the central nervous system.  相似文献   

11.
Many cell cycle genes are known to play important roles in regulating proliferation in the nervous system, however, a growing body of research has proposed that these genes have diverse functions beyond cell cycle regulation. Through the study of new genetic models, cell cycle regulatory genes have been shown to impact on a number of processes during nervous system development including apoptosis, differentiation, and, most recently, neuronal migration. Here we emphasize that the proposed roles for cell cycle genes in neuronal differentiation and migration are not the consequence of deregulated cell cycle, but represent truly novel functions for cell cycle genes.  相似文献   

12.
13.
Neuron-glia interactions are necessary for the formation of the longitudinal axon trajectories in the Drosophila central nervous system. Longitudinal glial cells are required for axon guidance and fasciculation, and pioneer neurons for trophic support of the glia. Neuregulin is a neuronal molecule that controls glial survival in the vertebrate nervous system. The Drosophila protein Vein has structural similarities with Neuregulin. We show here that Vein functions like a Neuregulin to maintain glial cell survival. We present direct in vivo evidence at single-cell resolution that Vein is produced by pioneer neurons and maintains the survival of neighboring longitudinal glia. This mechanism links axon guidance to control of glial cell number and may contribute to plasticity during the establishment of normal axonal trajectories.  相似文献   

14.
15.
Heat shock proteins (Hsps) act as molecular chaperones and are generally constitutively expressed in the absence of stress. Hsps are also inducible by a variety of stressors whose effects could be disastrous on the brain. It has been shown previously that Hsps are differentially expressed in glial and neuronal cells, as well as in the different structures of the brain. This differential expression has been related to specific functions distinct from their general chaperone function, such as intracellular transport. We investigated here the constitutive expression of 5 Hsps (the small Hsp, Hsp25, the constitutive Hsc70 and Hsp90beta, the mainly inducible Hsp70 and Hsp90alpha), and of a molecular chaperone, TCP-1alpha during mouse nervous system development. We analyzed, by immunohistochemistry, their distribution in the central nervous system and in the ganglia of the peripheral nervous system from day 9.5 (E9.5) to day 17.5 (E17.5) of gestation. Hsps are expressed in different cell classes (neuronal, glial, and vascular). The different proteins display different but often overlapping patterns of expression in different regions of the developing nervous system, suggesting unique roles at different stages of neural maturation. Their putative function in cell remodeling during migration or differentiation and in protein transport is discussed. Moreover we consider Hsp90 function in cell signaling and the role of Hsp25 in apoptosis protection.  相似文献   

16.
Mice that lack astrotactin have slowed neuronal migration   总被引:8,自引:0,他引:8  
The cortical regions of the brain are laminated as a result of directed migration of precursor cells along glia during development. Previously, we have used an assay system to identify astrotactin as a neuronal ligand for migration on glial fibers. To examine the function of astrotactin in vivo, we generated a null mutation by targeted gene disruption. The cerebella of astrotactin null mice are approximately 10% smaller than wild type. In vitro and in vivo cerebellar granule cell assays show a decrease in neuron-glial binding, a reduction in migration rates and abnormal development of Purkinje cells. Consequences of this are poorer balance and coordination. Thus, astrotactin functions in migration along glial processes in vivo, a process required for generating laminar structures and for the development of synaptic partner systems.  相似文献   

17.
PTEN: from pathology to biology   总被引:41,自引:0,他引:41  
The PTEN tumour suppressor gene is mutated frequently in many malignancies and its importance in the development of cancer is probably underestimated. As the primary phosphatase of phosphatidylinositol (3,4,5)-trisphosphate, PTEN has a central role in reigning in the phosphoinositide 3-kinase (PI 3-kinase) network to control cellular homeostasis. Cells that lack PTEN are unable to regulate the PtdIns 3-kinase programme, which stimulates a variety of cellular phenotypes that favour oncogenesis. As well as the well-known role as tumour suppressor, recent studies show that PTEN is involved in the regulation of several basic cellular functions, such as cell migration, cell size, contractility of cardiac myocytes and chemotaxis. Here, we review the roles of PTEN in normal cellular functions and disease development.  相似文献   

18.
Neurons and glia are produced in stereotyped patterns after neuroblast cell division during development of the Drosophila central nervous system. The first cell division of thoracic neuroblast 6-4 (NB6-4T) is asymmetric, giving rise to a glial precursor cell and a neuronal precursor cell. In contrast, abdominal NB6-4 (NB6-4A) divides symmetrically to produce two glial cells. To understand the relationship between cell division and glia-neuron cell fate determination, we examined and compared the effects of known cell division mutations on the NB6-4T and NB6-4A lineages. Based on observation of expression of glial fate determination and early glial differentiation genes, the onset of glial differentiation occurred in NB6-4A but not in NB6-4T when both cell cycle progression and cytokinesis were genetically arrested. On the other hand, glial differentiation started in both lineages when cytokinesis was blocked with intact cell cycle progression. These results showed that NB6-4T, but not NB6-4A, requires cell cycle progression for acquisition of glial fate, suggesting that distinct mechanisms trigger glial differentiation in the different lineages.  相似文献   

19.
We present evidence for unique localization and specific biological activities for transforming growth factor-beta s (TGF-beta s) 2 and 3, as compared to TGF-beta 1, in the nervous system of the 12-18 day mouse embryo. Each TGF-beta isoform was localized immunohistochemically by specific antibodies raised to peptides corresponding to unique sequences in the respective TGF-beta proteins. Staining for TGF-beta 1 was principally in the meninges, while TGF-beta s 2 and 3 co-localized in neuronal perikarya and axons, as well as in radial glial cells. In the central nervous system, staining was most prominent in zones where neuronal differentiation occurs and less intense in zones of active proliferation, while in the peripheral nervous system, many nerve fibers as well as their cell bodies were strongly immunoreactive for TGF-beta s 2 and 3. Functionally, we have also found that in the presence of an extract of chick eye tissue, TGF-beta s 2 and 3 inhibit survival of cultured embryonic chick ciliary ganglionic neurons in a dose-dependent fashion; TGF-beta 1 shows no inhibitory effects. Our data suggest that TGF-beta s 2 and 3 may play a role in regulation of neuronal migration and differentiation, as well as in glial cell proliferation and differentiation.  相似文献   

20.
Cancer stem cells in the mammalian central nervous system   总被引:1,自引:0,他引:1  
Malignant tumours intrinsic to the central nervous system (CNS) are among the most difficult of neoplasms to treat effectively. The major biological features of these tumours that preclude successful therapy include their cellular heterogeneity, which renders them highly resistant to both chemotherapy and radiotherapy, and the propensity of the component tumour cells to invade, diffusely, the contiguous nervous tissues. The tumours are classified according to perceived cell of origin, gliomas being the most common generic group. In the 1970s transplacental administration of the potent neurocarcinogen, N-ethyl-N-nitrosourea (ENU), enabled investigation of the sequential development of brain and spinal neoplasms by electron microscopy and immunohistochemistry. The significance of the primitive cells of the subependymal plate in cellular origin and evolution of a variety of glial tumours was thereby established. Since then, the development of new cell culture methods, including the in vitro growth of neurospheres and multicellular tumour spheroids, and new antigenic markers of stem cells and glial/neuronal cell precursor cells, including nestin, Mushashi-1 and CD133, have led to a reappraisal of the histological classification and origins of CNS tumours. Moreover, neural stem cells may also provide new vectors in exciting novel therapeutic strategies for these tumours. In addition to the gliomas, stem cells may have been identified in paediatric tumours including cerebellar medulloblastoma, thought to be of external granule cell neuronal derivation. Interestingly, while the stem cell marker CD133 is expressed in these primitive neuroectodermal tumours (PNETs), the chondroitin sulphate proteoglycan neuronal/glial 2 (NG2), which appears to denote increased proliferative, but reduced migratory activity in adult gliomas, is rarely expressed. This is in contrast to the situation in the histologically similar supratentorial PNETs. A possible functional 'switch' between proliferation and migration in developing neural tumour cells may exist between NG2 and ganglioside GD3. The divergent pathways of differentiation of CNS tumours and the possibility of stem cell origin, for some, if not all, such neoplasms remain a matter for debate and continued research, but the presence of self-renewing neural stem cells in the CNS of both children and adults strongly suggests a role for these cells in tumour initiation and resistance to current therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号