首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Natural, unenriched Evergladeswetlands are known to be limited by phosphorus(P) and responsive to P enrichment. However,whole-ecosystem evaluations of experimental Padditions are rare in Everglades or otherwetlands. We tested the response of theEverglades wetland ecosystem to continuous,low-level additions of P (0, 5, 15, and30 g L–1 above ambient) in replicate,100 m flow-through flumes located in unenrichedEverglades National Park. After the first sixmonths of dosing, the concentration andstanding stock of phosphorus increased in thesurface water, periphyton, and flocculentdetrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 g L–1: mean = 1916 g P g–1, control: mean =149 g P g–1), while the flocculentdetrital layer stored most of the accumulated P(30 g L–1: mean = 1.732 g P m–2,control: mean = 0.769 g P m–2). Significant short-term responsesof P concentration and standing stock wereobserved primarily in the high dose (30 gL–1 above ambient) treatment. Inaddition, the biomass and estimated P standingstock of aquatic consumers increased in the 30and 5 g L–1 treatments. Alterationsin P concentration and standing stock occurredonly at the upstream ends of the flumes nearestto the point source of added nutrient. Thetotal amount of P stored by the ecosystemwithin the flume increased with P dosing,although the ecosystem in the flumes retainedonly a small proportion of the P added over thefirst six months. These results indicate thatoligotrophic Everglades wetlands respondrapidly to short-term, low-level P enrichment,and the initial response is most noticeable inthe periphyton and flocculent detrital layer.  相似文献   

2.
1. Our goal was to quantify short‐term phosphorus (P) partitioning and identify the ecosystem components important to P cycling in wetland ecosystems. To do this, we added P radiotracer to oligotrophic, P‐limited Everglades marshes. 32PO4 was added to the water column in six 1‐m2 enclosed mesocosms located in long‐hydroperiod marshes of Shark River Slough, Everglades National Park. Ecosystem components were then repeatedly sampled over 18 days. 2. Water column particulates (>0.45 μm) incorporated radiotracer within the first minute after dosing and stored 95–99% of total water column 32P activity throughout the study. Soluble (<0.45 μm) 32P in the water column, in contrast, was always <5% of the 32P in surface water. Periphyton, both floating and attached to emergent macrophytes, had the highest specific activity of 32P (Bq g?131P) among the different ecosystem components. Fish and aquatic macroinvertebrates also had high affinity for P, whereas emergent macrophytes, soil and flocculent detrital organic matter (floc) had the lowest specific activities of radiotracer. 3. Within the calcareous, floating periphyton mats, 81% of the initial 32P uptake was associated with Ca, but most of this 32P entered and remained within the organic pool (Ca‐associated = 14% of total) after 1 day. In the floc layer, 32P rapidly entered the microbial pool and the labile fraction was negligible for most of the study. 4. Budgeting of the radiotracer indicated that 32P moved from particulates in the water column to periphyton and floc and then to the floc and soil over the course of the 18 day incubations. Floc (35% of total) and soil (27%) dominated 32P storage after 18 days, with floating periphyton (12%) and surface water (10%) holding smaller proportions of total ecosystem 32P. 5. To summarise, oligotrophic Everglades marshes exhibited rapid uptake and retention of labile 32P. Components dominated by microbes appear to control short‐term P cycling in this oligotrophic ecosystem.  相似文献   

3.
Restoration of the Everglades requires reduction of total phosphorus (TP) in the influent run-off from the Everglades agricultural area (EAA). The Everglades nutrient removal project tested phosphorus (P) - removal efficiencies of several treatment wetland cells. The best TP reduction has occurred within the submersed aquatic vegetation (SAV) - dominated treatment Cell 4. A significant proportion of the P reduction in Cell 4 over several years has been in the form of particulate P (PP). This study was conducted to (i) determine and compare the components of suspended solids in the Cell 4 influent and effluent waters, and (ii) investigate associations between PP and individual particulate components. Identification and quantification of components were accomplished using X-ray diffraction, thermogravimetry, scanning electron microscopy, and energy dispersive X-ray elemental analysis. The dominant particulate components in the Cell 4 water column are organic matter (OM), biogenic Si (predominantly diatom frustules), and calcite. Concentrations of PP, suspended solids, and particulate OM were greater at the Cell 4 inflow than at the outflow; consistent differences between particulate calcite in the influent vs. the effluent were not found. PP was positively correlated with particulate OM, but was not correlated with calcite. Data suggest that particulate OM, including microbial cells, plays an important role in P transport from the EAA. Possibly, a shift from planktonic to periphytic microbial distribution contributes to PP reduction. The importance of planktonic organisms as vectors of P in Everglades water warrants further study.  相似文献   

4.
Water draining from the Everglades marshes of southern Florida containshigh concentrations of dissolved organic C (DOC), N (DON), and in somelocations, P (DOP). These dissolved organic nutrients carry over 90% of the Nand organic C, and about 25% of the P exported downstream in the Everglades.Ourobjectives were to describe the most important aspects of the origin and fateofdissolved organic matter (DOM) in the Everglades, and to describe the processescontrolling its concentration and export. Concentrations of dissolved organicnutrients are influenced by local plant production, decomposition, and sorptionequilibrium with peat. The drained peat soils of the Everglades AgriculturalArea and the more productive marshes of the northern Everglades produce some ofthe highest concentrations of DOC and DON in the Everglades watershed. Inportions of the marshes of the northern Everglades, P enrichment was correlatedwith higher local DOC and DON concentrations and greater production of solubleplant matter. Microbial degradation of Everglades DOM was very slow; less than10% of the DOC was lost after 6 months of incubation in the laboratory andsupplements of inorganic nutrients failed to speed the decomposition. Exposureto solar radiation increased the subsequent decay rate of the remaining DOC(25%in 6 mo.). Solar radiation alone mineralized 20.5% of the DOC, 7%of the DON, and degraded about 50% of the humic substances over 21 days insterile porewater samples and thus degraded DOM faster than microbialdegradation. The humic substances appeared to inhibit biodegradation of theother fractions of the DOC since hydrophilic organic acids decomposed fasterwhen isolated from the humic substances.The fate of DOC and DON is closely linked as indicated by a generally narrowrange of C/N ratios. In contrast, high concentrations of DOP were associatedwith P enrichment (at least in pore water). The DOC was composed of about 50%humic substances, 33% hydrophilic acids, and 15% hydrophilic neutralsubstances,typical of DOC from other environments, despite the fact that it originatesfroma neutral to slightly alkaline peatland. Despite high exports of DON (3.9g m–2 y–1 from one area), themarshes of the northern Everglades are a sink for DON on a landscape scale. Theagricultural fields of the Everglades Agricultural Area, however, exported netquantities of DON. High concentrations of DOC desorbed from the agriculturalsoils when water with no DOC was added. Sorption experiments indicated thathighconcentrations of dissolved organic matter flowing into the marshes from theEverglades Agricultural Area could suppress the further desorption ofadditionalsoluble organic matter through physicochemical mechanisms. While biologicalfactors, plant production and microbial decomposition are important inproducingpotentially soluble organic nutrients, physicochemical sorption equilibria,hydrology, and degradation by solar radiation are also likely to control theexport of this material on the landscape scale.  相似文献   

5.
The use of periphyton nitrogenase activity (biological N2 fixation) as an indicator of wetland P impact was assessed using patterns of nutrient content (C, N, P, Ca, Mg, K, Fe, and Mn) and acetylene reduction (AR) in floating cyanobacterial periphyton mat (metaphyton) communities of a P-enriched portion of the Florida Everglades, USA (Water Conservation Area-2A, WCA-2A). Spatial patterns of nutrients indicate the enrichment of floating mat periphyton N, P, Fe, and K, and the reduction of Mn and TN:TP in enriched marsh areas. In highly enriched areas, floating mat periphyton AR was approximately threefold greater than that in less enriched, interior marsh zones. Multiple regression models indicated AR dependence on P in eutrophic WCA-2A areas while the AR of more interior marsh periphyton mats was more closely related to tissue levels of Ca and Fe. Nitrogenase activity of floating mat periphyton from P-loaded mesocosms revealed a significant enhancement of N2 fixation in samples receiving approximately 2–3 mg P m−2 of cumulative P dosing or with biomass TP content of 100–300 mg kg−1. At P contents above the optimum, mat periphyton AR was suppressed possibly as a result of changes in species composition or increased levels of NH4+. After 3 years of dosing, consistently high AR occurred only at low rates of P enrichment (0.4–0.8 g P m−2 yr−1), and the patterns appeared to be seasonal. These findings agree with the hypothesis that P availability is a key determinant of nitrogenase activity in aquatic systems, and thus, may support the use of periphyton nitrogenase to indicate P impacts in P-limited systems. These results also demonstrate the potential existence of a P threshhold for biogeochemical alteration of periphyton mat function in the Everglades, and that cumulative loading of limiting nutrients (i.e., P), rather than instantaneous concentrations, should be considered when evaluating nutrient criteria.  相似文献   

6.
Leaf litter decomposition of dominant woody perennial species in the three most common habitats of the southern Sonoran Desert was studied using the litter-bag method. Our objective was to assess the influence of litter quality on decomposition rates in three contrasting desert environments. The hypotheses were: (1) decomposition rates within the same litter type are faster in more mesic habitats, (2) decomposition rates are lower in higher lignin content or lower nutrient quality substrates, and (3) species-rich substrates enhance decomposition rates. For all litter types and habitats, a rapid loss of mass occurred during the summer rains at the start of the experiment, but total loss within the same litter type differed significantly among habitats. Decay rates were not higher in the more mesic habitat, but in the dry plains where solar irradiance and termite activity were highest. While termite activity was less important in the arroyos and absent in the hillsides habitats, proliferation of fungal mycelium in these sites was much higher than in the plains, suggesting that biotic and abiotic factors act both independently of litter richness. Lignin content seems to be an important factor controlling the loss of litter, because decay rates were inversely related to litter initial lignin content in all three habitats. Leaf litter diversity did not enhance rates of decomposition. The leaf litter mixture had k-values similar to the most recalcitrant monospecific litter in all three habitats, indicating a neutral or even antagonistic role of species-specific compounds in decomposition rates.  相似文献   

7.
神农架不同海拔典型森林凋落物的分解特征   总被引:1,自引:0,他引:1  
采用凋落物分解袋法,研究了神农架不同海拔3种典型森林凋落物的分解动态.结果表明: 依据分解速率,常绿阔叶林、常绿落叶阔叶混交林和落叶阔叶林3种典型森林凋落物的分解过程明显分为两个阶段,前期(0~360 d)凋落物的质量损失率为后期(361~720 d)的2.62~4.08倍,前期的分解速率分别为后期的2.71、1.72和2.69倍.凋落物分解95%所需的时间分别为3.84、4.54和4.16 a.分解后期凋落物的分解速率与C/N及N、半纤维素、纤维素、木质素含量均呈显著相关关系.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号