首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of the hydroosmotic response in the toad urinary bladder is considered to be associated with membrane addition mediated by exocytosis at the affected luminal membrane and reversed by endocytic retrieval at that surface. The permeability, exocytosis and endocytosis are initiated by antidiuretic hormone (ADH) receptor interaction on the basolateral membrane. In other hormone responsive systems, phorbol ester (phorbol myristate acetate, PMA), a tumor promoter, has been implicated in the regulation of various transport processes through the activation of protein kinase C and cytoskeletal protein phosphorylation. We found that addition of 10(-6) M PMA to the mucosa induces an hydroosmotic response which is gradual and which reaches a maximum within 60 min, equal to about 1/3 the maximal ADH response. Morphologically, PMA causes rapid exocytosis of the granules, endocytosis of horseradish peroxidase from the mucosal medium into tubules and multivesicular bodies and elongation of apical microvilli. Controls treated with mucosal 0.1% dimethylsulfoxide (DMSO) or an inactive PMA isomer on the mucosal surface, or PMA on the serosal surface lack the hydroosmotic, exocytic, endocytic and cytoskeletal changes. Addition of serosal ADH to PMA-treated bladders results in a precocious hydroosmotic and exocytic ADH response, but a lowering of the maximal response. Also pretreatment of bladders with PMA prevented the ADH-induced increase in transepithelial potential difference. Thus, apical events mediating the PMA hydroosmotic response are correlated with exo- and endocytosis and elongation of apical microvilli.  相似文献   

2.
The role of adenylate cyclase (AC) in the maintenance of the hydroosmotic response to serosal hypertonicity (SH) in anuran urinary bladder is disputed. In this study, norepinephrine (NE) significantly reversed the hydroosmotic response of Rana temporaria bladders in hypertonic medium (330 mosmol/kgH2O). The reversal was inhibited by yohimbine but was unaffected by prazosin and propranolol, indicating that NE action was mediated via alpha2-adrenergic receptors. Preincubation of bladders with indomethacin did not interfere with the inhibitory action of NE, contraindicating a role for prostaglandins. The SH hydroosmotic response was abolished in the presence of 5-n-ethyl-N-isopropyl amiloride (EIPA), but the antidiuretic hormone (ADH) hydroosmotic response was not. EIPA inhibits Na+/H+, known to be activated by cell shrinkage. An investigation of the anionic requirement of the SH hydroosmotic response revealed that replacement of bath Cl- with the nonpermeable anion gluconate reversibly abolished this response. In contrast, the hydroosmotic response to ADH was unaffected by Cl- removal; however, when Cl- was absent, it was no longer augmented in hypertonic bath. The SH response was inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoate but not by the Na/K/2Cl inhibitor bumetanide. Our results show that not only the onset but also the maintenance of the SH hydroosmotic response is dependent on AC activity and does not differ in this respect to the ADH hydroosmotic response. The effect of modifying extracellular Cl- concentration, suggests that this anion, possibly functionally linked with Na+/H+ activity, may be involved in invoking the SH hydroosmotic response in anuran urinary bladder.  相似文献   

3.
Several classes of tricyclic antidepressants inhibit the action of antidiuretic hormone (ADH) and cyclic adenine monophosphate (cAMP) on osmotic water flow across toad urinary bladder without any effect on sodium transport. This finding suggests that calmodulin is involved in the hydroosmotic action of ADH (and of serosal hypertonicity), possibly in inducing exocytosis at the luminal border of vesicles rich in water channels.  相似文献   

4.
In the toad urinary bladder 8-p-chlorophenylthio-cyclic AMP mimics the stimulatory effects of antidiuretic hormone on osmotic water permeability, 3H2O diffusion, and transepithelial sodium transport; but unlike the hormone does not cause an increase in urea permeability. Trheshold activation for the hydroosmotic response is observed at 1 micrometer and full activation at 100 micrometer. These results suggest that cyclic AMP may not mediate all the physiological effects of antidiuretic hormone and that this highly potent cyclic AMP analog may be useful in elucidating the precise role of cyclic AMP in other biomediate hormone action.  相似文献   

5.
In the accompanying paper, a compartmental model for the toad bladder sodium transport system was developed. In the present paper, the model is tested by determining the effects of antidiuretic hormone on the pools and fluxes. It is shown that this hormone affects only that sodium pool previously designated as the transport pool, and that the effects are on two separate sites. In the first place, the hormone stimulates entry at the mucosal side of the transport compartment, and by this means brings about an increase in the amount of sodium contained in the compartment. Second, the hormone has a distinct stimulatory effect on the rate coefficient for efflux across the serosal boundary, the pump rate coefficient. Evidence is presented that under control conditions, the pump rate coefficient is a decreasing function of the pool size, a characteristic feature of a saturating system. Therefore, the effect of vasopressin in increasing both the pool size and the pump rate coefficient must be construed as a direct effect on the pump, and not one which is secondary to the increase in the pool size. Furthermore, it is shown that the effect of the hormone on the sodium pump is not dependent on the presence of sodium in the serosal medium.  相似文献   

6.
It has been demonstrated that inhibitors of oxidative metabolism--rotenone, amytal, antimycin A, oligomycin and 2,4-dinitrophenol--block hydroosmotic response of the urinary bladder of the frog to pituitrin, cAMP and serosal hypertonicity caused by 200 mosm mannitol. Electron donors sodium ascorbate and phenasinemethasulphate completely abolish the inhibitory effect of rotenone and antimycin A (but not of oligomycin). It is concluded that intracellular reactions which are sensitive to the effect of the inhibitors of oxidative metabolism, begin from the step after cAMP formation.  相似文献   

7.
The hydroosmotic responses induced by oxytocin and 8-bromo-cyclic AMP, in frog and toad urinary bladders, were recorded minute by minute. 3HHO and 45Ca unidirectional fluxes as well as prostaglandin B2 liberation were also measured. It was observed that: (1) Addition of the calcium ionophore A23187 or quinidine to the serosal bath inhibited the response to oxytocin, but not to 8-bromo-cyclic AMP, while increasing prostaglandin E1 liberation into the serosal but not into the mucosal bath. (2) Addition of A23187 to the mucosal bath induced a transient and temperature-dependent inhibition of the response elicited by 8-bromo-cyclic AMP. The time-course of this reduction in water permeability and its sensitivity to medium temperature were similar to those observed after the withdrawal of agonist, but clearly different of those observed after intracellular acidification. (3) The hydroosmotic response was also transitorily inhibited when the Ca2+ concentration was step-changed in the mucosal bath. (4) When added to the mucosal or to the serosal baths, the ionophore increased either the apical or the laterobasal Ca2+ permeabilities. It is concluded that manipulation of intracellular Ca2+ interferes with the hydroosmotic response at two different levels. (1) A first target point located 'pre-cyclic-AMP production'. This effect would be mediated by prostaglandin liberation. (2) A second target point located after cyclic AMP production and before the 'temperature-dependent rate-limiting step'. This effect is probably related to the mechanism controlling the insertion and removal of water channels.  相似文献   

8.
Arginine vasotocin, 0.02--1 nM, increases osmotic water permeability of frog urinary bladder, arginine vasotocin after a simultaneous addition to the mucosal and serosal Ringer solutions rises the water permeability to a lesser degree than on the hormone addition only to the serosal solution. 1 nM remestyp, an agonist of V1-receptors, from the apical membrane decreases the hydroosmotic effect of arginine vasotocin added to the serosal Ringer solution. When added to the mucosal solution, combination of the same concentrations of arginine vasotocin and SR 49059, an antagonist of V--receptors, or desmopressin, agonist of V2-receptor alone, increases the effect of the same concentration of arginine vasotocin added to the serosal solution. 1 nM arginine vasotocin at the luminal membrane increases secretion into the Ringer solution of prostaglandin E, and prostaglandin E1 but not of prostaglandin F2 alpha. The data obtained indicate the presence of the arginine vasotocin receptors responsible for the hydroosmotic effect only in the basolateral membranes, while arginine prostaglandin E, participation is shown in modulation of the arginine vasotocin effect.  相似文献   

9.
This study reports the synthesis of l-desamino-7-lysine- (fluorescein)-8-arginine-vasotocin (7-lys(flu) dAVT), and describes its biological activity in the isolated urinary bladder of the toad Bufo marinus. 7-lys(flu)dAVT was fully active in increasing bladder permeability to water. A half-maximal hydroosmotic response was obtained at a concentration of 3 x 10(-8) M. A unique feature of this analog was that its response was not readily reversed after removal of the analog from the serosal bathing solution. The residual response to 7-lys(flu) dAVT was abolished (reversibly) by reducing serosal bath pH from 7.4 to 6.0, suggesting that acidification inhibits the response to analog at a step after the interaction of the ligand with its receptor. Although 8-arginine-vasopressin (AVP) was about 20 times more potent than 7-lys(flu)dAVT in increasing membrane permeability to water, the response to AVP was readily reversed. Preincubation of bladders with 7-lys(flu)dAVT in the presence of AVP blocked the residual response to 7-lys(flu) dAVT. These studies suggest that 7-lys(flu)dAVT forms a stable and physiologically active complex with hydrosmotic toad bladder receptors, and it may, therefore, serve as a useful fluorescent marker for receptors in tissues from this and other species that use vasotocin as an antidiuretic/pressor principle.  相似文献   

10.
In experiments carried out on the frog urinary bladder, it was found that 20 sec after vasopressin was added, the content of 1,2-di-acylglycerol, labelled with [3H]-arachidonic acid, increased by 44% and the content of [3H]-phosphatidylinositol-4,5-diphosphate (PIP2) decreased by 22%. Five minutes after hormone addition the amount of prostaglandin E (PGE) released into the serosal solution was increased three-fold. Preincubation of bladders in 10(-4) M neomycin led to a 26% increase in vasopressin-stimulated water flow, a block of PIP2 breakdown, and a reduction in PGE synthesis of 62%. A significant decrease in content of lipids labelled with [3H]-arachidonic acid was found in 1,2-diacylglycerol and phosphatidylethanolamine (diacyl form). The data obtained suggest that the role of PIP2 breakdown products in negative feed-back regulation of the hydroosmotic action of vasopressin at least in part includes their connection with PGE biosynthesis activation.  相似文献   

11.
Summary Toad urinary bladders were exposed on either their mucosal or serosal surfaces, or on both surfaces, to medium in which sodium was replaced completely by lithium. With mucosal lithium Ringer's, serosal sodium Ringer's, short-circuit current (SCC) declined by about 50 percent over the first 60 min and was then maintained over a further 180 min. Cellular lithium content was comparable to the sodium transport pool. With lithium Ringer's serosa, SCC was abolished over 60 to 120 min whether the mucosal cation was sodium or lithium. Measurements of cellular ionic composition revealed that the epithelial cells gained lithium from both the mucosal and serosal media. With lithium Ringer's mucosa and serosa, cells lost potassium and gained lithium and a little chloride and water, but these changes in cellular ions could not account for the current flow across the tissue under these conditions, which must, therefore, have been carried by a transepithelial movement of lithium itself. The inhibition by serosal lithium of SCC was overcome by exposure of the mucosal surface of the bladders to amphotericin B. Thus it reflected, predominantly, an inhibition of lithium entry to the cells across the apical membrane. It is suggested that this inhibition is a consequence of cellular lithium accumulation.  相似文献   

12.
The present study deals with an analysis of specific traits of cell vacuolation induced by water flow and ADH. During incubation of frog urinary bladders in Ringer's solution diluted 2-fold, the water content of the bladder wall increased by an average of 19%. In case of ADH-stimulated water flow the water content increased by an average of 15.7%. Cell swelling induced by hypotonic conditions on the serosal side resulted in a drastic decrease of the response to the hydroosmotic action of ADH. Electron microscopy revealed significant differences between cells hydrated in the above conditions. Two-fold hypotonicity of the serosal solution caused a slight swelling of all types of cells accompanied by a narrowing of intercellular spaces. With ADH stimulation of water transport (at maximal water movement) granular cells were characterized by the presence of irregularly shaped giant vacuoles with processes. The limiting membranes of the vacuoles were closely connected with microtubules and microfilaments. The electron microscopic study of these cells by the freeze-substitution method revealed, in addition to giant vacuoles, a highly complex system of microtubules 35-40 nm in diameter. A morphological similarity was observed between the vacuolar systems of these granular cells and the contractile vacuole complex of protozoans. Possible mechanisms for the participation of giant vacuoles, electron-dense canaliculi, microtubules and microfilaments in transcellular water flow across epithelium are discussed.  相似文献   

13.
Summary The role of Ca2+ in the stimulation by antidiuretic hormone (ADH) of active sodium transport across the isolated epithelium of frog skin was investigated. This has been done by bathing the blood side with Ca2+-free solution containing 0.1mm EGTA. This Ca2+ depletion halved the resistance but had no significant effect on the short-circuit current (SCC). The sensitivity of both cAMP- and SCC-stimulation to ADH was increased 40-fold by Ca2+ depletion. Sensitivity to stimulation by theophylline was only changed a little, while stimulation by exogenous cAMP was completely unaltered. The increase in sensitivity to ADH was dependent on the duration of preincubation in Ca2+-free solution, which indicates that a slowly exchanging Ca2+ pool is involved in the determination of sensitivity to ADH. We suggest this pool is of cellular origin and the increased sensitivity is due to the decrease of a Ca2+ inhibition of the ADH-stimulated adenylate cyclase. But a direct effect of Ca2+ on binding of ADH to the receptor cannot be excluded. Our results are not compatible with the hypothesis that entry of extracellular Ca2+ is an obligatory step in the natriferic action of ADH, although it may be so in the hydroosmotic action of ADH. We also found the maximal response to ADH to be higher after Ca2+ depletion. This is in agreement with the hypothesis of intracellular Ca2+ as a modulator of the sodium permeability of the outward-facing membrane.  相似文献   

14.
Summary This study concerns the timing and magnitude of exocytosis and endocytosis in the granular cells of toad bladder during the hydroosmotic response to antidiuretic hormone. Granule exocytosis at the luminal cell surface is extensive within 5 min of the administration of a physiological dose of hormone. Hydroosmosis becomes detectable during this time period. The amount of membrane added to the luminal surface by exocytosis during 60 min of exposure to hormone can be of the same order of magnitude as the extent of the luminal plasma membrane. Endocytosis, demonstrated by peroxidase uptake from the luminal surface, becomes extensive during the period 15–45 min after hormone administration. Thus, maximal endocytic activity occurs later than the period of most extensive exocytosis and seems to correlate with the onset of the decline in water movement. The amount of membrane retrieved from the luminal surface by endocytosis during 60 min of stimulation is at least three quarters of that added by exocytosis. The bulk membrane movement in ADH stimulated preparations does not require the presence of an osmotic gradient. Colchicine inhibits the hydroosmotic response, the exocytosis of granules, and endocytosis at the luminal surface. These results strengthen our view that the bulk circulation of membrane at the cell surface, via exocytosis and endocytosis, is closely related to the permeability changes occuring at the surface.  相似文献   

15.
The effects of the sodium ionophore monensin on osmotic water flow across the urinary bladder of the toad Bufo marinus were studied. Monensin alone did not alter osmotic water flow; however, the ionophore inhibited the hydrosmotic response to vasopressin and cyclic AMP in a dose-dependent manner. The inhibitory effects of monensin were apparent when the ionophore was added to th serosal bathing solution but not when it was added to the mucosal bathing solution. The inhibitory effect of serosal monensin required the presence of sodium in the serosal bathing solution but not the presence of calcium in the bathing solutions. Thus, it appears that intracellular sodium concentration is a regulator of the magnitude of the hydrosmotic response to vasopressin and cyclic AMP.  相似文献   

16.
Summary The effects of the sodium ionophore monensin on osmotic water flow across the urinary bladder of the toadBufo marinus were studied. Monensin alone did not alter osmotic water flow; however, the ionophore inhibited the hydrosmotic response to vasopressin and cyclic AMP in a dose-dependent manner. The inhibitory effects of monensin were apparent when the ionophore was added to the serosal bathing solution but not when it was added to the mucosal bathing solution. The inhibitory effect of serosal monensin required the presence of sodium in the serosal bathing solution but not the presence of calcium in the bathing solutions. Thus, it appears that intracellular sodium concentration is a regulator of the magnitude of the hydrosmotic response to vasopressin and cyclic AMP.  相似文献   

17.
Summary The possibility that sodium from the serosal bathing medium back-diffuses into the active sodium transport pool within the mucosal epithelial cell of the isolated toad bladder was examined by determining the effect on the metabolism of the tissue of removing sodium from the serosal medium. It was expected that if recycling of serosal sodium did occur through the active transepithelial transport pathway of the isolated toad bladder, removal of sodium from the serosal medium would reduce the rate of CO2 production by the tissue and enhance the stoichiometric ratio of sodium ions transported across the bladder per molecule of sodium transport dependent CO2 produced simultaneously by the bladder (J Na/J CO 2). The data revealed no significant change in this ratio (17.19 with serosal sodium and 16.13 after replacing serosal sodium with choline). Further, when transepithelial sodium transport was inhibited (a) by adding amiloride to the mucosal medium, or (b) by removing sodium from the mucosal medium, subsequent removal of sodium from the serosal medium, or (c) addition of ouabain failed to depress the basal rate of CO2 production by the bladder [(a) rate of basal, nontransport related, CO2 production (J CO2 b ) equals 1.54±0.52 with serosal sodium and 1.54±0.37 without serosal sodium; (b)J CO2 b equals 2.18±0.21 with serosal sodium and 2.09±0.21 without serosal sodium; (c) 1.14±0.26 without ouabain and 1.13±0.25 with ouabain; unite ofJ CO2 b are nmoles mg d.w.–1 min–1]. The results support the hypothesis that little, if any, recycling of serosal sodium occurs in the toad bladder.  相似文献   

18.
The divalent cation ionophore A 23187 was used to evaluate the action of intracellular calcium on net transepithelial water movement across the isolated frog urinary bladder. Incubation with the ionophore increases the net basal water flux in a dose-dependent fashion but independent of the extracellular calcium concentration. Bladders pretreated with A 23187 and exposed thereafter to an increase in calcium concentration exhibit a water permeability that under certain conditions can be comparable to that achieved with antidiuretic hormone (ADH). Lowering the serosal calcium at the peak of the hydrosmotic responses to both ADH and A 23187 inhibited the maintenance of the net water flux. The action of a supramaximal dose of ADH is blunted in bladders pretreated with A 23187, while the hydrosmotic effects of a submaximal dose are enhanced when the ionophore is added together with the hormone. The results show that an increase in transepithelial water movement can be triggered by calcium and that serosal calcium is needed to sustain the response. This hydrosmotic response may be dependent upon the rate at which intracellular calcium concentrations change and on the absolute concentration attained. It is suggested that calcium is involved in the action of ADH on water permeability and may act as a modulator of the hydrosmotic response.  相似文献   

19.
Benzodiazepine binding sites are present in a variety of non-neuronal tissues including the kidney where they are localized to distal nephron segments. It is postulated that renal binding sites are involved in modulating ion transport. This study examined the effects of two benzodiazepines on sodium transport in frog skin epithelium, a model system for sodium transport in renal collecting duct. Treatment of short-circuited frog skin with diazepam (a non-selective benzodiazepine agonist) stimulated amiloride-sensitive short-circuit current, reflecting stimulation of active sodium transport. The diazepam response was equally effective with either serosal or mucosal application of the drug. Maximal stimulation of the current (42 +/- 8%) was achieved with 10 microM diazepam (serosal). Short-circuit current was similarly augmented by serosal or mucosal addition of Ro5-4864, a benzodiazepine agonist with selective activity at peripheral (non-neuronal) receptors. The natriferic response to diazepam was additive to that of vasopressin or cyclic AMP suggesting that the mode of action of benzodiazepines is probably distinct from the cyclic AMP pathway. Thus, frog skin appears to be a useful model to examine the epithelial effects of benzodiazepines. Whether stimulation of sodium transport, however, involves peripheral-type benzodiazepine receptors in this tissue requires further studies.  相似文献   

20.
The urinary bladder of the aquatic toad Xenopus laevis is known to exhibit a low permeability to water and a poor sensitivity to antidiuretic hormone. In order to precise the characteristics and the specific cellular mechanisms of this reduced hydroosmotic response we used a sensitive volumetric technique to monitor net water flow and studied the correlation between the anti-diuretic hormone (ADH)-induced net water flow and the fine ultrastructural appearence of the urinary bladder epithelium. Transmural net water flow was entirely dependent on the osmotic gradient across the preparation and not on the hydrostatic pressure difference. We observed the existence of a low but significant hydro-osmotic response to arginine vasopressin. Freeze-fracture electron microscopy demonstrated the presence of typical aggrephores in the subapical cytoplasm. The response to the hormone was accompanied by the appearance of typical intramembrane aggregates into the apical plasma membrane. Water permeability increase and apical aggregate insertion were both slowly but fully reversible. Except for the multilayered structure of the epithelium and the particularly low response to antidiuretic hormone, all the studied permeability and ultrastructural characteristics of the bladder were thus very similar to those observed in other sensitive epithelia such as the amphibian bladder and skin and the mammalian collecting duct which exhibit a high hydro-osmotic response to the hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号