首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ren L  Zou X  Smith JA  Brüggemann M 《Genomics》2004,84(4):686-695
Silencing or removal of individual C (constant)-region genes and/or adjacent control sequences did not generate fully deficient Ig (immunoglobulin)- mice. A reason is that different C genes share many functional tasks and most importantly are individually capable of ensuring lymphocyte differentiation. Nevertheless, incomplete arrests in B-cell development were found, most pronounced at the onset of H-chain expression. Here we show that removal of 200 kb accommodating all C genes, Cmu-Cdelta-Cgamma3-Cgamma1-Cgamma2b-Cgamma2a-Cepsilon-Calpha, stops antibody production. For this two loxP targeting constructs were introduced into the most 5' C gene and the distal alpha 3' enhancer. Cre-loxP-mediated in vivo deletion was accompanied by extensive germ-line mosaicism, which could be separated by breeding. Homozygous C-gene deletion mice did not express Ig H or L chains and flow cytometry revealed a complete block in B-cell development. However, C-gene removal did not affect DNA rearrangement processes following locus activation, as recombination efficacy appears to be similar to what is found in normal mice.  相似文献   

2.
The dominant male sex determiner in chromosome III of the midge Chironomus thummi thummi is closely linked to a large cluster of tandem-repetitive DNA elements, the Cla elements, which are otherwise highly repetitive and distributed over more than 200 sites on all chromosomes. Chromosome III displays a hemizygous cluster of Cla elements in males but not in females. The chromosomal location of this hemizygous Cla element cluster is in the region of the male determiner M as localized by cytogenetic analysis. With Cla elements as hybridization probe, it was possible to clone a large part of the sex determining region. Molecular analysis of the DNA of males and females in this region displayed a number of differences between the two sexes. One striking difference is an unusual transposable element associated with the male sex determining region. The sex determining region also contains several other tandem-repetitive DNA elements in addition to the Cla elements. They are interspersed with single copy DNA. The accumulation of repetitive elements in the sex determining region is interpreted as the result of a lack of recombination between the male/female heteromorphic region, although recombination in the other sections of chromosome III occurs.  相似文献   

3.
Representatives of several classes of transposable elements (TEs) have been characterized in a broad range of fungal species. The studies indicate that these elements are ancient and ubiquitous components of fungal genomes. Some of these elements have been shown to actively affect gene structure and function in several ways: inactivation of gene expression upon insertion, modification of the nucleotide sequence through excision, and probably by inducing extensive chromosomal rearrangements. The ability of TEs to generate a high degree of genetic diversity may therefore be important in the evolution of the fungal genome. TEs also have many potential applications in genetic research, including insertional mutagenesis and population fingerprinting, as well as gene transfer within and between species. All these genetic approaches are important as tools in studies of molecular biology and evolution of fungal species, many of which lack a functional sexual cycle.  相似文献   

4.
Rice (Oryza sativa) was cultivated by Asian Neolithic farmers >11,000 years ago, and different cultures have selected for divergent starch qualities in the rice grain during and after the domestication process. An intron 1 splice donor site mutation of the Waxy gene is responsible for the absence of amylose in glutinous rice varieties. This mutation appears to have also played an important role in the origin of low amylose, nonglutinous temperate japonica rice varieties, which form a primary component of Northeast Asian cuisines. Waxy DNA sequence analyses indicate that the splice donor mutation is prevalent in temperate japonica rice varieties, but rare or absent in tropical japonica, indica, aus, and aromatic varieties. Sequence analysis across a 500-kb genomic region centered on Waxy reveals patterns consistent with a selective sweep in the temperate japonicas associated with the mutation. The size of the selective sweep (>250 kb) indicates very strong selection in this region, with an inferred selection coefficient that is higher than similar estimates from maize domestication genes or wild species. These findings demonstrate that selection pressures associated with crop domestication regimes can exceed by one to two orders of magnitude those observed for genes under even strong selection in natural systems.  相似文献   

5.
Transposable and interspersed repetitive elements (TIREs) are ubiquitous features of both prokaryotic and eukaryotic genomes. However, controversy has arisen as to whether these sequences represent useless selfish DNA elements, with no cellular function, as opposed to useful genetic units.In this review, we selected two insect species, the Dipteran Drosophila and the Lepidopteran Bombyx mori (the silkmoth), in an attempt to resolve this debate. These two species were selected on the basis of the special interest that our laboratory has had over the years in Bombyx with its well known molecular and developmental biology, and the wealth of genetic data that exist for Drosophila. In addition, these two species represent contrasting repetitive element types and patterns of distribution. On one hand, Bombyx exhibits the short interspersion pattern in which Alu-like TIREs predominate while Drosophila possesses the long interspersion pattern in which retroviral-like TIREs are prevalent. In Bombyx, the main TIRE family is Bm-1 while the Drosophila group contains predominantly copia-like elements, non-LTR retroposons, bacterial-type retroposons and fold-back transposable elements sequences. our analysis of the information revealed highly non-random patterns of both TIRE biology and evolution, more indicative of these sequences acting as genomic symbionts under cellular regulation rather than useless or selfish junk DNA. In addition, we extended our analysis of potential TIRE functionality to what is known from other eukaryotic systems. From this study, it became apparent that these DNA elements may have originated as innocuous or selfish sequences and then adopted functions. The mechanism for this conversion from non-functionality to specific roles is a process of Coevolution between the repetitive element and other cellular DNA often times in close physical proximity. The resulting interdependence between repetitive elements and other cellular sequences restrict the number of evolutionarily successful mutational changes for a given fuction or cistron. This mutual limitation is what we call genome canalization. Well documented examples are discussed to support this hypothesis and a mechanistic model is presented for how such genomic canalization can occur. Also proposed are empirical studies which would support or invalidate aspects of this hypothesis.  相似文献   

6.
Drosophila melanogaster embryos and cells in culture were screened for the presence of unintegrated covalently closed circular DNA forms that hybridize to copia-like transposable elements, the F element and uncharacterized dispersed middle repetitive DNA elements. Our results indicate that the majority of copia-like elements (including copia, 297, 412, mdg1, mdg3 and gypsy), the F elements, and 9 of 12 middle repetitive DNA elements are present as free DNA forms in cultured cells and embryos. An 18 base-pair inverted repeat has been reported to flank the long direct repeat of mdg3, implying that mdg3 is not an orthodox copia-like element; however, we have sequenced two independently isolated mdg3 clones and shown that the inverted repeat is not part of the element. The relative abundance with which free DNA forms are found varies between the cultured cells used, and between cultured cells and embryos. This variation, which can be up to 20-fold for some elements, does not correlate well with either the amount of element-specific poly(A)+ RNA present per cell or the number of element-specific sequences integrated in the genome.  相似文献   

7.
Linkage disequilibrium (LD) at the adh1 locus was examined in two sets of maize inbreds. A set of 32 was chosen to represent most of the genetic diversity in the cultivated North American elite maize breeding pool. A second set of 192 inbreds was chosen to sample more deeply the two major heterotic groups in elite maize germplasm. Analysis of several loci in the vicinity of the adh1 gene shows that LD as measured by D and r2 extends greater than 500 kbp in this germplasm. The presence of this exceptionally long segment of high LD may be suggestive of selection acting on one of the genes in the vicinity of adh1 or of a locally reduced rate of recombination.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

8.
Summary: Low-complexity, repetitive protein sequences with alimited amino acid palette are abundant in nature, and manyof them play an important role in the structure and functionof certain types of proteins. However, such repetitive sequencesoften do not have rigidly defined motifs. Consequently, theidentification of these low-complexity repetitive elements hasproven challenging for existing pattern-matching algorithms.Here we introduce a new web-tool SubSeqer (http://compsysbio.org/subseqer/)which uses graphical visualization methods borrowed from proteininteraction studies to identify and characterize repetitiveelements in low-complexity sequences. Given their abundance,we suggest that SubSeqer represents a valuable resource forthe study of typically neglected low-complexity sequences. Contact: jparkin{at}sickkids.ca Associate Editor: Limsoon Wong  相似文献   

9.
A survey of minisatellites (MSs) in 5.3 Mb of randomly selected rice DNA sequences from public databases was carried out to clarify the role of transposable elements (TEs) in the dispersal of MSs in the rice genome. The estimated frequency of MSs in this sample was one per 23.4 kb, and this frequency is approximately equivalent to that of Class I microsatellites in the rice genome. Of the MSs in the 5.3-Mb sequence sample, 82% were found to be present in multiple copies in the rice genome, and all of these were a part of TE sequences. In this study at least 61 TE groups were identified as MS carriers. It was also shown that the GC-rich MS pOs6.2H, which was previously reported to be one of the interspersed MSs in the rice genome, is a component of an En / Spm -like element. These results indicate that the majority of MSs in the rice genome are maintained in TEs, and amplified and dispersed as components of the TEs. The G+C content of the multi-locus MS sequences reflected that of the TE sequences containing those MSs, but no obvious bias towards the high G+C content of DNA was observed. Single locus MSs also did not show any obvious bias towards the high G+C content of DNA in the rice genome. In this respect, the MSs in the rice genome are quite different from those in the human genome: in the latter, the majority of MSs show an obvious bias towards the high G+C content of DNA.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

10.
11.
Miniature inverted-repeat transposable elements (MITEs), some of which are known as active non-autonomous DNA transposons, are found in the genomes of plants and animals. In peanut (Arachis hypogaea), AhMITE1 has been identified in a gene for fatty-acid desaturase, and possessed excision activity. However, the AhMITE1 distribution and frequency of excision have not been determined for the peanut genome. In order to characterize AhMITE1s, their genomic diversity and transposition ability was investigated. Southern blot analysis indicated high AhMITE1 copy number in the genomes of A. hypogaea, A. magna and A. monticola, but not in A. duranensis. A total of 504 AhMITE1s were identified from the MITE-enriched genomic libraries of A. hypogaea. The representative AhMITE1s exhibited a mean length of 205.5 bp and a GC content of 30.1%, with AT-rich, 9 bp target site duplications and 25 bp terminal inverted repeats. PCR analyses were performed using primer pairs designed against both flanking sequences of each AhMITE1. These analyses detected polymorphisms at 169 out of 411 insertional loci in the four peanut lines. In subsequent analyses of 60 gamma-irradiated mutant lines, four AhMITE1 excisions showed footprint mutations at the 109 loci tested. This study characterizes AhMITE1s in peanut and discusses their use as DNA markers and mutagens for the genetics, genomics and breeding of peanut and its relatives.  相似文献   

12.
MOTIVATION: The analysis of repeated elements in genomes is a fascinating domain of research that is lacking relevant tools for transposable elements (TEs), the most complex ones. The dynamics of TEs, which provides the main mechanism of mutation in some genomes, is an essential component of genome evolution. In this study we introduce a new concept of domain, a segmentation unit useful for describing the architecture of different copies of TEs. Our method extracts occurrences of a terminus-defined family of TEs, aligns the sequences, finds the domains in the alignment and searches the distribution of each domain in sequences. After a classification step relative to the presence or the absence of domains, the method results in a graphical view of sequences segmented into domains. RESULTS: Analysis of the new non-autonomous TE AtREP21 in the model plant Arabidopsis thaliana reveals copies of very different sizes and various combinations of domains which show the potential of our method. AVAILABILITY: DomainOrganizer web page is available at www.irisa.fr/symbiose/DomainOrganizer/.  相似文献   

13.
A large proportion (0.5-1%) of total mouse DNA is cleaved by Bam HI into fragments whose size is about 500 base pairs. A cloned member of this repetitive family of DNA sequences (BAM5 family) was sequenced by the dideoxy chain termination procedure and shown to contain 507 base pairs. The sequence exhibited no unusual or remarkable features. Repetitive sequences complementary to the cloned BAM5 fragment were found in rat DNA, but not in feline or human DNA. Restriction mapping suggested that many BAM5 sequences were components of much larger repetitive DNAs which were scattered throughout the mouse genome. The BAM5 sequences within the larger repetitive DNAs did not appear to be arranged tandemly or as members of scrambled tandem repeats. RNA homologous to the cloned BAM5 sequence was detected in cultured mouse cells, but not in cultured rat cells.  相似文献   

14.
C Gao  M Xiao  X Ren  A Hayward  J Yin  L Wu  D Fu  J Li 《Genomics》2012,100(4):222-230
The movement of transposable elements (TE) in eukaryotic genomes can often result in the occurrence of nested TEs (the insertion of TEs into pre-existing TEs). We performed a general TE assessment using available databases to detect nested TEs and analyze their characteristics and putative functions in eukaryote genomes. A total of 802 TEs were found to be inserted into 690 host TEs from a total number of 11,329 TEs. We reveal that repetitive sequences are associated with an increased occurrence of nested TEs and sequence biased of TE insertion. A high proportion of the genes which were associated with nested TEs are predicted to localize to organelles and participate in nucleic acid and protein binding. Many of these function in metabolic processes, and encode important enzymes for transposition and integration. Therefore, nested TEs in eukaryotic genomes may negatively influence genome expansion, and enrich the diversity of gene expression or regulation.  相似文献   

15.
16.
17.
We report the molecular cloning of a chromosome segment including the white locus of Drosophila melanogaster. This region was isolated using a deficiency extending from the previously cloned heat-shock puff sequences at 87A7 to a large transposable element containing the loci white and roughest.FB-NOF, a 7.5 kb element with partial homology to a family of inverted repeat sequences (Potter et al., 1980), is found very near the deficiency breakpoint, and is followed by DNA originating from the white locus region. Sequences totalling ˜60 kb surrounding this initial entry point were obtained by the cloning of successively overlapping fragments from a wild-type strain. Several rearrangement breakpoints have been mapped relative to the cloned DNA; these define the limits of the white locus and further differentiate the “white proximal region”, thought to function in gene regulation, from the remainder of the locus. Insertion of the dispersed repetitive element copia into the white locus is observed in strains carrying the white-apricot allele. Analysis of several white-apricot revertants suggests that copia insertion is responsible for the apricot eye color phenotype.  相似文献   

18.
We analyzed the conservation of large paralogous regions (more than 200 kb) on human chromosome regions 21q22.1 and 21q11.2 and on pericentromeric regions of chromosomes 2, 13, and 18 in three nonhuman primate species. Orthologous regions were found by FISH analysis of metaphase chromosomes from Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus. Only one orthologous region was detected in chromosomes of P. pygmaeus, showing that the original locus was at 21q22.1 and that the duplication arose after the separation of Asian orangutans from the other hominoids. Surprisingly, the paralogous regions were more highly conserved in gorilla than in chimpanzee. PCR amplification of STSs derived from sequences of the chromosome 21 loci and low-stringency FISH analysis showed that this duplication occurred recently in the evolution of the genome. Different rates of sequence evolution through substitutions or deletions, after the duplication, may have resulted in diversity between closely related primates.  相似文献   

19.
The a1 locus of Zea mays has been cloned using transposable elements as gene tags. The strategy was to make genomic libraries from maize stocks with a1 mutations induced either by En(Spm) or by Robertson's Mutator-system. These libraries were then screened with either Spm-I8 and En1, for the En-containing mutant, or with Mu1 for the Mu-induced mutation. There are many En and Mu1 hybridizing sequences present in the maize genome, however, by a process of cross-screening of the positives from the two libraries and by molecular analysis of the En-positive clones it was possible to identify clones in both libraries carrying all or part of the a1 gene.  相似文献   

20.
The existence of polymorphism in the Waxy locus in a large gene pool of 53 strains with various waxy phenotypes from samples of Amaranthus hypochondriacus collected from different regions was investigated in an origin-and-evolution study. First, we screened all strains for a mutation point (G–A polymorphism in exon 6) by using PCR–RFLP and/or direct sequence analysis. The results showed that the nonsense mutation in the coding region (exon 6) of the Waxy gene was responsible for the change in perisperm starch, leading to a waxy phenotype in all strains. Second, phylogenetic analysis, which was based on the Waxy variation, indicated diverse waxy types occurring separately and independently in certain domesticated regions in Mexico. Finally, we designated nine molecular types by comparing obvious structural variations in the coding region of the Waxy gene. Among the molecular types, A. hypochondriacus contained Type III in three subtypes with the waxy phenotype, with evolutionary routes that could originate from Type II in accordance with G–A polymorphism. In addition, these types had the same mutation points by which the Waxy gene was converted into the waxy phenotype. Therefore, the present results showed that the nonsense mutation is a unique event in the evolution of waxy phenotypes in this crop. This study will provide useful information for understanding the evolutionary process of the waxy phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号