首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The let-413/scribble and dlg-1/discs large genes are key regulators of epithelial cell polarity in C. elegans and other systems but the mechanism how they organize a circumferential junctional belt around the apex of epithelial cells is not well understood. We report here that IP3/Ca2+ signaling is involved in the let-413/dlg-1 pathway for the establishment of epithelial cell polarity during the development in C. elegans. Using RNAi to interfere with let-413 and dlg-1 gene functions during post-embryogenesis, we discovered a requirement for LET-413 and DLG-1 in the polarization of the spermathecal cells. The spermatheca forms an accordion-like organ through which eggs must enter to complete the ovulation process. LET-413- and DLG-1-depleted animals exhibit failure of ovulation. Consistent with this phenotype, the assembly of the apical junction into a continuous belt fails and the PAR-3 protein and microfilaments are no longer localized asymmetrically. All these defects can be suppressed by mutations in IPP-5, an inositol polyphosphate 5-phosphatase and in ITR-1, an inositol triphosphate receptor, which both are supposed to increase the intracellular Ca2+ level. Analysis of embryogenesis revealed that IP3/Ca2+ signaling is also required during junction assembly in embryonic epithelia.  相似文献   

2.
Epithelial cells perform important roles in the formation and function of organs and the genesis of many solid tumors. A distinguishing feature of epithelial cells is their apicobasal polarity and the presence of apical junctions that link cells together. The interacting proteins Par-6 (a PDZ and CRIB domain protein) and aPKC (an atypical protein kinase C) localize apically in fly and mammalian epithelial cells and are important for apicobasal polarity and junction formation. Caenorhabditis elegans PAR-6 and PKC-3/aPKC also localize apically in epithelial cells, but a role for these proteins in polarizing epithelial cells or forming junctions has not been described. Here, we use a targeted protein degradation strategy to remove both maternal and zygotic PAR-6 from C. elegans embryos before epithelial cells are born. We find that PKC-3 does not localize asymmetrically in epithelial cells lacking PAR-6, apical junctions are fragmented, and epithelial cells lose adhesion with one another. Surprisingly, junction proteins still localize apically, indicating that PAR-6 and asymmetric PKC-3 are not needed for epithelial cells to polarize. Thus, whereas the role of PAR-6 in junction formation appears to be widely conserved, PAR-6-independent mechanisms can be used to polarize epithelial cells.  相似文献   

3.
PAR proteins distribute asymmetrically across the anterior-posterior axis of the 1-cell-stage C. elegans embryo, and function to establish subsequent anterior-posterior asymmetries. By the end of the 4-cell stage, anteriorly localized PAR proteins, such as PAR-3 and PAR-6, redistribute to the outer, apical surfaces of cells, whereas posteriorly localized PAR proteins, such as PAR-1 and PAR-2, redistribute to the inner, basolateral surfaces. Because PAR proteins are provided maternally, distinguishing apicobasal from earlier anterior-posterior functions requires a method that selectively prevents PAR activity after the 1-cell stage. In the present study we generated hybrid PAR proteins that are targeted for degradation after the 1-cell stage. Embryos containing the hybrid PAR proteins had normal anterior-posterior polarity, but showed defects in apicobasal asymmetries associated with gastrulation. Ectopic separations appeared between lateral surfaces of cells that are normally tightly adherent, cells that ingress during gastrulation failed to accumulate nonmuscle myosin at their apical surfaces and ingression was slowed. Thus, PAR proteins function in both apicobasal and anterior-posterior asymmetry during the first few cell cycles of embryogenesis.  相似文献   

4.
Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP(3)) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP(3) signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23-mediated IP(3) signaling pathway genes. We infer that IPP-5 negatively regulates IP(3) signaling to ensure proper spermathecal contraction.  相似文献   

5.
The development of many animal organs involves a mesenchymal to epithelial transition, in which cells develop and coordinate polarity through largely unknown mechanisms. The C. elegans pharynx, which is an epithelial tube in which cells polarize around a central lumen, provides a simple system with which to understand the coordination of epithelial polarity. We show that cell fate regulators cause pharyngeal precursor cells to group into a bilaterally symmetric, rectangular array of cells called the double plate. The double plate cells polarize with apical localization of the PAR-3 protein complex, then undergo apical constriction to form a cylindrical cyst. We show that laminin, but not other basement membrane components, orients the polarity of the double plate cells. Our results provide in vivo evidence that laminin has an early role in cell polarity that can be distinguished from its later role in basement membrane integrity.  相似文献   

6.
《Developmental biology》1999,205(1):111-128
Prior to fertilization, oocytes undergo meiotic maturation (cell cycle progression) and ovulation (expulsion from the ovary). To begin the study of these processes inCaenorhabditis elegans,we have defined a time line of germline and somatic events by video microscopy. As the oocyte matures, its nuclear envelope breaks down and its cell cortex rearranges. Immediately thereafter, the oocyte is ovulated by increasing contraction of the myoepithelial gonadal sheath and relaxation of the distal spermatheca. By systematically altering the germ cell contents of the hermaphrodite using mutant strains, we have uncovered evidence of four cell–cell interactions that regulate maturation and ovulation. (1) Both spermatids and spermatozoa induce oocyte maturation. In animals with a feminized germline, maturation is inhibited and oocytes arrest in diakinesis. The introduction of sperm by mating restores maturation. (2) Sperm also directly promote sheath contraction. In animals with a feminized or tumorous germline, contractions are infrequent, whereas in animals with a masculinized germline or with sperm introduced by mating, contractions are frequent. (3 and 4) The maturing oocyte both induces spermathecal dilation and modulates sheath contractions at ovulation; dilation of the distal spermatheca and sharp increases in sheath contraction rates are only observed in the presence of a maturing oocyte.  相似文献   

7.
Xu X  Guo H  Wycuff DL  Lee M 《Experimental cell research》2007,313(11):2465-2475
During Caenorhabditis elegans ovulation, the somatic gonad integrates signals from germ cells and propels a mature oocyte into the spermatheca for fertilization. Previous work suggests that phosphoinositide signaling plays important roles in C. elegans fertility. To fully understand inositol-1,4,5-trisphosphate (IP(3)) signaling in ovulation, we have examined the function of phosphatidylinositol-4-phosphate 5' kinase (PIP5K) in C. elegans. Our results show that the C. elegans PIP5K homolog, ppk-1, is essential for ovulation in C. elegans; ppk-1 is mainly expressed in somatic gonad, and depletion of ppk-1 expression causes defective ovulation, reduced gonad sheath contractility, and sterility. Increased IP(3) signaling compensates for ppk-1 (RNAi)-induced sterility, suggesting that ppk-1 is linked to IP(3) signaling. These results demonstrate that ppk-1 plays an essential role in IP(3) signaling and cytoskeleton organization in somatic gonad.  相似文献   

8.
The Caenorhabditis elegans vulva provides a simple model for the genetic analysis of pattern formation and organ morphogenesis during metazoan development. We have discovered an essential role for the polarity protein PAR-1 in the development of the vulva. Postembryonic RNA interference of PAR-1 causes a protruding vulva phenotype. We found that depleting PAR-1 during the development of the vulva has no detectable effect on fate specification or precursor proliferation, but instead seems to specifically alter morphogenesis. Using an apical junction-associated GFP marker, we discovered that PAR-1 depletion causes a failure of the two mirror-symmetric halves of the vulva to join into a single, coherent organ. The cells that normally form the ventral vulval rings fail to make contact or adhere and consequently form incomplete toroids, and dorsal rings adopt variably abnormal morphologies. We also found that PAR-1 undergoes a redistribution from apical junctions to basolateral domains during morphogenesis. Despite a known role for PAR-1 in cell polarity, we have observed no detectable differences in the distribution of various markers of epithelial cell polarity. We propose that PAR-1 activity at the cell cortex is critical for mediating cell shape changes, cell surface composition, or cell signaling during vulval morphogenesis.  相似文献   

9.
Fos and Jun are components of activator protein-1 (AP-1) and play crucial roles in the regulation of many cellular, developmental, and physiological processes. Caenorhabditis elegans fos-1 has been shown to act in uterine and vulval development. Here, we provide evidence that C. elegans fos-1 and jun-1 control ovulation, a tightly regulated rhythmic program in animals. Knockdown of fos-1 or jun-1 blocks dilation of the distal spermathecal valve, a critical step for the entry of mature oocytes into the spermatheca for fertilization. Furthermore, fos-1 and jun-1 regulate the spermathecal-specific expression of plc-1, a gene that encodes a phospholipase C (PLC) isozyme that is rate-limiting for inositol triphosphate production and ovulation, and overexpression of PLC-1 rescues the ovulation defect in fos-1(RNAi) worms. Unlike fos-1, regulation of ovulation by jun-1 requires genetic interactions with eri-1 and lin-15B, which are involved in the RNA interference pathway and chromatin remodeling, respectively. At least two isoforms of jun-1 are coexpressed with fos-1b in the spermatheca, and different AP-1 dimers formed between these isoforms have distinct effects on the activation of a reporter gene. These findings uncover a novel role for FOS-1 and JUN-1 in the reproductive system and establish C. elegans as a model for studying AP-1 dimerization.  相似文献   

10.
The spermathecal complex of the bark beetle, Ips typographus, comprises the following elements: spermathecal duct, spermatheca and spermathecal gland. The spermathecal duct connects the vagina and the spermatheca and consists of a cuticular tube surrounded by an epithelial layer and circular muscles. The spermatheca is bottle-shaped and has a cuticle-lined lumen. Muscles are attached to both ends of the spermatheca. The spermathecal gland which is connected to the spermatheca possesses three cell types: glandular, hypodermal, and ductule. The glandular cells have different structural characteristics depending on the age and reproductive state of the females. After the emergence of the brood, two different kinds of secretory material are present in the glandular cells. There is evidence that one type of secretion is emitted during the first few days after brood emergence, while the other type accumulates to be secreted during later stages.  相似文献   

11.
We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607--3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95--106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na(+),K(+)-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3-PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.  相似文献   

12.
Apically enriched Rab11-positive recycling endosomes (Rab11-REs) are important for establishing and maintaining epithelial polarity. Yet, little is known about the molecules controlling trafficking of Rab11-REs in an epithelium in vivo. Here, we report a genome-wide, image-based RNA interference screen for regulators of Rab11-RE positioning and transport of an apical membrane protein (PEPT-1) in C. elegans intestine. Among the 356 screen hits was the 14-3-3 and partitioning defective protein PAR-5, which we found to be specifically required for Rab11-RE positioning and apicobasal polarity maintenance. Depletion of PAR-5 induced abnormal clustering of Rab11-REs to ectopic sites at the basolateral cortex containing F-actin and other apical domain components. This phenotype required key regulators of F-actin dynamics and polarity, such as Rho GTPases (RHO-1 and the Rac1 orthologue CED-10) and apical PAR?proteins. Our data suggest that PAR-5 acts as a regulatory hub for a polarity-maintaining network required for apicobasal asymmetry of F-actin and proper Rab11-RE positioning.  相似文献   

13.
Xu X  Lee D  Shih HY  Seo S  Ahn J  Lee M 《FEBS letters》2005,579(2):549-553
Signals from germ and myoepithelial sheath cells initiate ovulation in Caenorhabditis elegans. The coordinated dilation and contraction of spermatheca lead to subsequent fertilization of oocyte. Either the dominant negative mutant pat-3 beta integrin or disruption of talin expression block ovulation. Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans. Role of beta pat-3 integrins in development and function of Caenorhabditis elegans muscles and gonads, suggesting that the interaction between the cell and the extracellular matrix (ECM) is also important for ovulation. Here, we report that integrin plays an essential role in fertility via IP(3) signaling. Sterility caused by RNAi of pat-3 and ECM molecules was suppressed by increased IP(3) signaling. Our data suggest that the cell-ECM interaction controls ovulation via IP(3) signaling.  相似文献   

14.
BACKGROUND: The PAR proteins are known to be localized asymmetrically in polarized C. elegans, Drosophila, and human cells and to participate in several cellular processes, including asymmetric cell division and spindle orientation. Although astral microtubules are known to play roles in these processes, their behavior during these events remains poorly understood. RESULTS: We have developed a method that makes it possible to examine the residence time of individual astral microtubules at the cell cortex of developing embryos. Using this method, we found that microtubules are more dynamic at the posterior cortex of the C. elegans embryo compared to the anterior cortex during spindle displacement. We further observed that this asymmetry depends on the PAR-3 protein and heterotrimeric G protein signaling, and that the PAR-2 protein affects microtubule dynamics by restricting PAR-3 activity to the anterior of the embryo. CONCLUSIONS: These results indicate that PAR proteins function to regulate microtubule dynamics at the cortex during microtubule-dependent cellular processes.  相似文献   

15.
Tissue morphogenesis requires proper interaction between cells and the extracellular matrix (ECM), which is mediated by alphabeta heterodimeric receptor integrin. In Caenorhabditis elegans, integrin signaling is essential for formation of gonad. Here, we probe the role of several integrin-associated molecules in ovulation and cell migration. Function of pat-4/integrin-linked kinase (ILK) and unc-112/Mig-2 was examined using RNA-mediated interference (RNAi). Depletion of these messages caused oocyte accumulation in the proximal gonad and distal tip cells (DTC) migration defects. It was further determined that failed ovulation was due to defective contraction and dilation of somatic gonad structures, including spermatheca and gonad sheath. Actin cytoskeleton in the proximal gonad of RNAi animals appeared disorganized, indicating that RNAi of pat-4 or unc-112 inhibited the overall assembly of actin cytoskeleton in somatic gonad. Taken together, our analysis confirms the role of integrin and integrin-associated proteins in gonad function.  相似文献   

16.
[目的]明确宽翅曲背蝗Pararcyptera microptera meridionalis雌虫受精囊的形态、组织结构与超微结构,为更好地认识昆虫受精囊的功能提供依据.[方法]本研究以宽翅曲背蝗已交配雌成虫为实验材料,利用光学显微镜和透射电子显微镜观察其受精囊的形态、组织结构和超微结构.[结果]宽翅曲背蝗受精囊由一个端囊和一条长的受精囊管组成,端囊用于储存精子.端囊和受精囊管有相似的组织学结构,由外到内依次为肌肉层、基膜、上皮层及表皮内膜.上皮层含上皮细胞、腺细胞和导管细胞3种细胞类型.腺细胞具有一个被有微绒毛的细胞外腔.腺细胞的分泌物经细胞外腔通过分泌导管进入到受精囊腔.分泌导管由导管细胞形成.[结论]在宽翅曲背蝗受精囊的端囊和受精囊管上,内膜和腺细胞的细胞外腔结构均存在差异,由此推测,端囊和受精囊管的功能存在一定差异.上皮细胞的超微结构特点显示上皮细胞具有支持、分泌和吸收的功能.  相似文献   

17.
The C. elegans PAR proteins PAR-3, PAR-6, and PKC-3 are asymmetrically localized and have essential roles in cell polarity. We show that the one-cell C. elegans embryo contains a dynamic and contractile actomyosin network that appears to be destabilized near the point of sperm entry. This asymmetry initiates a flow of cortical nonmuscle myosin (NMY-2) and F-actin toward the opposite, future anterior, pole. PAR-3, PAR-6, and PKC-3, as well as non-PAR proteins that associate with the cytoskeleton, appear to be transported to the anterior by this cortical flow. In turn, PAR-3, PAR-6, and PKC-3 modulate cortical actomyosin dynamics and promote cortical flow. PAR-2, which localizes to the posterior cortex, inhibits NMY-2 from accumulating at the posterior cortex during flow, thus maintaining asymmetry by preventing inappropriate, posterior-directed flows. Similar actomyosin flows accompany the establishment of PAR asymmetries that form after the one-cell stage, suggesting that actomyosin-mediated cortical flows have a general role in PAR asymmetry.  相似文献   

18.
Cho JH  Ko KM  Singaravelu G  Ahnn J 《FEBS letters》2005,579(3):778-782
The Caenorhabditis elegans PMR1, a P-type Ca2+/Mn2+ ATPase, is expressed in hypodermal seam cells, intestinal cells and spermatheca; localized in Golgi complex. Knock down of pmr-1 as well as overexpression of truncated Caenorhabditis elegans PMR1, which mimics dominant mutations observed in human Hailey-Hailey disease, renders the worm highly sensitive to EGTA and Mn2+. Interestingly, pmr-1 knock down not only causes animals to become resistant to oxidative stress but also suppresses high reactive oxygen species sensitivity of smf-3 RNA-mediated interference and daf-16 worms. These findings suggest that C. elegans PMR1 has important roles in Ca2+ and Mn2+ homeostasis and oxidative stress response.  相似文献   

19.
Polarity is essential for generating cell diversity. The one-cell C. elegans embryo serves as a model for studying the establishment and maintenance of polarity. In the early embryo, a myosin II-dependent contraction of the cortical meshwork asymmetrically distributes the highly conserved PDZ proteins PAR-3 and PAR-6, as well as an atypical protein kinase C (PKC-3), to the anterior. The RING-finger protein PAR-2 becomes enriched on the posterior cortex and prevents these three proteins from returning to the posterior. In addition to the PAR proteins, other proteins are required for polarity in many metazoans. One example is the conserved Drosophila tumor-suppressor protein Lethal giant larvae (Lgl). In Drosophila and mammals, Lgl contributes to the maintenance of cell polarity and plays a role in asymmetric cell division. We have found that the C. elegans homolog of Lgl, LGL-1, has a role in polarity but is not essential. It localizes asymmetrically to the posterior of the early embryo in a PKC-3-dependent manner, and functions redundantly with PAR-2 to maintain polarity. Furthermore, overexpression of LGL-1 is sufficient to rescue loss of PAR-2 function. LGL-1 negatively regulates the accumulation of myosin (NMY-2) on the posterior cortex, representing a possible mechanism by which LGL-1 might contribute to polarity maintenance.  相似文献   

20.
The alignment of sperm in a cloacal sperm storage gland, the spermatheca, was studied in female desmognathine salamanders by scanning and transmission electron microscopy. Females representing nine species and collected in spring, late summer, and fall in the southern Appalachian Mountains contained abundant sperm in their spermathecae. The spermatheca is a compound tubuloalveolar gland connected by a single common tube to the middorsal wall of the cloaca. Sperm enter the common tube in small groups aligned in parallel along their axes, and continue in a straight course until encountering divisions of the common tube (neck tubules) or luminal borders of distal bulbs, which can act as barriers. Sperm may form tangles, in which small clusters retain their mutual alignment, at the branches of the neck tubules from the common tube, or in the lumen of the distal bulbs, where subsequent waves of sperm collide with sperm already present. The nuclei of some sperm from the initial group to encounter the walls of the distal bulbs appear to become embedded in secretory material on the luminal border or in the apical cytoplasm of the spermathecal epithelial cells. We propose that these sperm become trapped in the spermatheca and are ultimately degraded. J. Morphol. 238:143–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号