首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M Nomura  S Inouye  Y Ohmiya  F I Tsuji 《FEBS letters》1991,295(1-3):63-66
The requirement for a proline residue at the C-terminus of the Ca(2+)-binding photoprotein, aequorin, was investigated by measuring luminescence activities of a series of C-terminal deletion mutants, substitution mutants and an addition mutant. CD spectral measurements of apoaequorin with the C-terminal proline deleted showed a small change in secondary structure. In all cases studied, the C-terminal proline was required for bioluminescence activity.  相似文献   

2.
The Ca2+-sensitive photoprotein aequorin (Mr = 20,000) was introduced into human blood platelets by incubation with 10 mM EGTA and 5 mM ATP. Platelet cytoplasmic and granule contents were retained during the loading procedure, and platelet morphology, aggregation, and secretion in response to agonists were normal after aequorin loading. Luminescence indicated an apparent resting cytoplasmic ionized calcium concentration [( Cai2+]) of 2-4 microM in media containing 1 mM Ca2+ and of 0.8-2 microM in 2-4 mM EGTA. The Ca2+ ionophore A23187 and the enzyme thrombin produced dose-related luminescent signals in both Ca2+-containing and EGTA-containing media. Peak [Cai2+] after A23187 or thrombin stimulation of aequorin-loaded platelets was 2-10 microM, while peak [Cai2+] determined using Quin 2 as the [Cai2+] indicator was at least 1 log unit lower. In platelets loaded with both aequorin and Quin 2, the aequorin signal was delayed but not reduced in amplitude. Aequorin loading of Quin 2-loaded cells had no effect on the Quin 2 signal. Ca2+ buffering by Quin 2 (intracellular concentration greater than 1 mM) is also supported by a reciprocal relationship between [Quin 2] and peak [Cai2+] stimulated by A23187 in the presence of EGTA. Parallel experiments with Quin 2 and aequorin may identify inhomogeneous [Cai2+] in platelets and give a more complete picture of platelet Ca2+ homeostasis than either indicator alone.  相似文献   

3.
Using aequorin-loaded rat platelets stimulated with collagen, we found two phases of Ca2+ mobilization, one coinciding with a shape change and the other with aggregation, which have not yet been detected in quin2-loaded platelets. U46619, a stable analogue of prostaglandin H2, induced only a shape change and a concomitant rapid rise in the cytoplasmic ionized calcium concentration ([Cai2+]). However, upon addition of U46619 to platelets previously stimulated with collagen in the presence of indomethacin, a rapid increase in [Cai2+] and a shape change occurred, and, after about 1 min, second increase in [Cai2+] and aggregation occurred. The actions of U46619 were inhibited by an antagonist for the thromboxane A2 (TXA2) receptor. These results suggest that the collagen-induced shape change is initiated by TXA2-induced Ca2+ mobilization, and aggregation is induced by the secondary Ca2+ mobilization induced by TXA2 and the occupation of the receptor by collagen.  相似文献   

4.
Mitochondria have a very large capacity to accumulate Ca(2+) during cell stimulation driven by the mitochondrial membrane potential. Under these conditions, [Ca(2+)](M) (mitochondrial [Ca(2+)]) may well reach millimolar levels in a few seconds. Measuring the dynamics of [Ca(2+)](M) during prolonged stimulation has been previously precluded by the high Ca(2+) affinity of the probes available. We have now developed a mitochondrially targeted double-mutated form of the photoprotein aequorin which is able to measure [Ca(2+)] in the millimolar range for long periods of time without problems derived from aequorin consumption. We show in the present study that addition of Ca(2+) to permeabilized HeLa cells triggers an increase in [Ca(2+)](M) up to an steady state of approximately 2-3 mM in the absence of phosphate and 0.5-1 mM in the presence of phosphate, suggesting buffering or precipitation of calcium phosphate when the free [Ca(2+)] reaches 0.5-1 mM. Mitochondrial pH acidification partially re-dissolved these complexes. These millimolar [Ca(2+)](M) levels were stable for long periods of time provided the mitochondrial membrane potential was not collapsed. Silencing of the mitochondrial Ca(2+) uniporter largely reduced the rate of [Ca(2+)](M) increase, but the final steady-state [Ca(2+)](M) reached was similar. In intact cells, the new probe allows monitoring of agonist-induced increases of [Ca(2+)](M) without problems derived from aequorin consumption.  相似文献   

5.
EDTA-binding and acylation of the Ca2+-sensitive photoprotein aequorin   总被引:9,自引:0,他引:9  
The rate of phosphorylation and concomitant inactivation of purified pig heart muscle pyruvate dehydrogenase complex by intrinsic kinase (EC 2.7.1.99) is markedly accelerated by the addition of coenzyme A to the incubation medium, showing a half-maximum effect at 1.8 μM. The pantetheine moiety is the effective part of the coenzyme A molecule. The free thiol group is prerequisite for the stimulatory action, acetyl-CoA, benzoyl-CoA or CoAS-SCoA being ineffectual. The thiol's specificity is evidenced by showing that dithiothreitol, 2-mercaptoethanol or glutathione up to 5 mM failed to replace coenzyme A. The possibility is considered that coenzyme A might act as a physiological modifier of pyruvate dehydrogenase kinase activity.  相似文献   

6.
7.
A study was made of the effects of pH and protic and aprotic solvents on the spectral properties of Renilla (sea pansy) luciferin and a number of its analogs. The results have made possible the assignment of two tautomeric forms of Renilla luciferin, one which absorbs maximally at 435 nm and another which exhibits an absorption maximum at 454 nm. Furthermore the results provide an explanation for the visible absorption characteristics of the photoproteins aequorin (lambda-max 454 nm) and mnemiopsin (lambda-max 435 nm). In addition a Renilla-like luciferin can be extracted from both of these photoproteins. This luciferin produces light with Renilla luciferase, at a rate dependent upon the concentration of dissolved oxygen, and in other respects is indistinguishable from Renilla luciferin in this bioluminescent reaction. The results suggest that the native chromophore in both photoproteins is Renilla luciferin (or a nearly identical derivative). The results also suggest that a hydroperoxide intermediate probably exists in photoproteins, on energetic grounds, and to account for the oxygen concentration independency of the rate of photoprotein reactions. This hydroperoxide may be attached initially to an amino-acid side chain (possibly indolyl-OOH, imidazoyl-OOH, or -SOOH) rather than to the luciferin chromophore.  相似文献   

8.
The present work describes the engineering and characterization of a new Ca(2+)-activated photoprotein (Photina) and its use in mammalian cell lines for implementation of flash luminescence cell-based assays for high-throughput screening (HTS). When used to measure the activation of 2 G protein-coupled receptors (GPCRs), targeting Photina to the mitochondria increased the signal strength as compared to the normal cytoplasmic expression of Photina. The mitochondrial-targeted Photina also produced a higher signal-to-noise ratio than conventional calcium dyes and a consistently stronger signal than aequorin when tested under equivalent conditions. MitoPhotina provided strong and reliable results when used to measure the activity of purinergic receptors endogenously expressed in the Chinese Hamster Ovary cells and heterologously expressed GPCRs in response to their cognate ligands. Several different types of flash luminescence plate readers (FLIPR(3), FLIPR(TETRA), CyBi-Lumax flash HT, Lumilux, Lumibox) in different plate formats (96, 384, 1536 wells) were used to validate the use of Photina in HTS. The cell number had to be adjusted to correspond to the qualities of the different readers, but once so adjusted, it provided equivalent results on each device. The results obtained show robust and reproducible light signals that offer new possibilities for application of photoproteins to the generation of cell-based assays for HTS.  相似文献   

9.
Aequorin is a Ca2(+)-binding protein that emits light upon reacting with Ca2+ and has been used as a probe for monitoring changes in the intracellular free Ca2+ concentration, [Ca2+]i. The protein consists of three components: apoaequorin (apoprotein), molecular oxygen and a chromophore. The present study was designed to conditionally express the apoaequorin cDNA of the jellyfish Aequorea victoria under the control of the GAL1 promoter in the yeast Saccharomyces cerevisiae and to investigate whether apoaequorin can be accumulated in high enough concentration in the cells to detect a Ca2+ signal in vitro. The results showed that the cells accumulated sufficient amounts of recombinant apoaequorin when incubated in the galactose-based medium and that the protein was active and not toxic to the cells, suggesting that the recombinant apoaequorin may be applicable to monitoring changes in [Ca2+]i in intact yeast cells.  相似文献   

10.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

11.
P Sah  E M McLachlan 《Neuron》1991,7(2):257-264
We examined the possibility that Ca2+ released from intracellular stores could activate K+ currents underlying the afterhyperpolarization (AHP) in neurons. In neurons of the dorsal motor nucleus of the vagus, the current underlying the AHP had two components: a rapidly decaying component that was maximal following the action potential (GkCa,1) and a slower component that had a distinct rising phase (GkCa,2). Both components required influx of extracellular Ca2+ for their activation, and neither was blocked by extracellular TEA (10 mM). GkCa,1 was selectively blocked by apamin, whereas GkCa,2 was selectively reduced by noradrenaline. The time course of GkCa,2 was markedly temperature sensitive. GkCa,2 was selectively blocked by application of ryanodine or sodium dantrolene, or by loading cells with ruthenium red. These results suggest that influx of Ca2+ directly gates one class of K+ channels and leads to release of Ca2+ from intracellular stores, which activates a different class of K+ channel.  相似文献   

12.
Estimates of cytoplasmic Ca2+ concentration ([Ca2+]i) were made essentially simultaneously in the same intact frog skeletal muscle fibers with aequorin and with Ca-selective microelectrodes. In healthy fibers under truly resting conditions [Ca2+]i was too low to be measured reliably with either technique. The calibration curves for both indicators were essentially flat in this range of [Ca2+], and the aequorin light signal was uniformly below the level to be expected in the total absence of Ca2+. When [Ca2+]i had been raised to a stable level below the threshold for contracture by increasing [K+]o to 12.5 mM, [Ca2+]i was 38 nM according to aequorin and 59 nM according to the Ca-selective microelectrodes. These values are not significantly different. Our estimates of [Ca2+]i are lower than most others obtained with microelectrodes, probably because the presence of aequorin in the cells allowed us to detect damaging microelectrode impalements that otherwise we would have had no reason to reject. The observation that the light emission from aequorin-injected fibers in normal Ringer solution was below the level expected from the Ca(2+)-independent luminescence of aequorin in vitro was investigated further, with the conclusion that the myoplasm contains a diffusible macromolecule (between 10 and 30 kD) that interacts with aequorin to reduce light emission in the absence of Ca2+.  相似文献   

13.
14.
Light-sensitive Ca(2+) -regulated photoproteins are responsible for the bright bioluminescence of ctenophores. Using functional screening, four full-size cDNA genes encoding the same 208-amino-acid polypeptide were isolated from two independent cDNA libraries prepared from two Beroe abyssicola specimens. Sequence analysis revealed three canonical EF-hand calcium-binding sites characteristic of Ca(2+) -regulated photoproteins, but a very low degree of sequence identity (27-29%) with aequorin-type photoproteins, despite functional similarities. Recombinant berovin was expressed in Escherichia coli cells, purified, converted to active photoprotein and characterized. Active berovin has absorption maxima at 280 and 437 nm. The Ca(2+) -discharged protein loses visible absorption, but exhibits a new absorption maximum at 335 nm. The berovin bioluminescence is blue (λ(max) = 491 nm) and a change in pH over the range 6.0-9.5 has no significant effect on the light emission spectrum. By contrast, the fluorescence of Ca(2+) -discharged protein (λ(ex) = 350 nm) is pH sensitive: at neutral pH the maximum is at 420 nm and at alkaline pH there are two maxima at 410 and 485 nm. Like native ctenophore photoproteins, recombinant berovin is also inactivated by light. The Ca(2+) concentration-effect curve is a sigmoid with a slope on a log-log plot of ~ 2.5. Although this curve for berovin is very similar to those obtained for obelin and aequorin, there are evident distinctions: berovin responds to calcium changes at lower concentrations than jellyfish photoproteins and its Ca(2+) -independent luminescence is low. Recombinant berovin was successfully expressed in mammalian cells, thereby demonstrating potential for monitoring intracellular calcium. Database The nucleotide sequences have been deposited in the GenBankTM/EBI Data Bank with accession numbers: apoberovin cDNA genes, JN673813 (BA1), JN673814 (BA2), JN673815 (BA3), JN673816 (BA4); fragment 18S rRNA, JN673817 (BA-rRNA5).  相似文献   

15.
Aequorin, which is a calcium-sensitive photoprotein and a member of the EF-hand superfamily, binds to Mg2+ under physiological conditions, which modulates its light emission. The Mg2+ binding site and its stabilizing influence were examined by NMR spectroscopy. The binding of Mg2+ to aequorin prevented the molecule from aggregating and stabilized it in the monomeric form. To determine the structural differences between Mg2+-bound and free aequorin, we have performed backbone NMR assignments of aequorin in the Mg2+-free state. Mg2+ binding induces conformational changes that are localized in the EF-hand loops. The chemical shift difference data indicated that there are two Mg2+-binding sites, EF-hands I and III. The Mg2+ titration experiment revealed that EF-hand III binds to Mg2+ with higher affinity than EF-hand I, and that only EF-hand III seems to be occupied by Mg2+ under physiological conditions.  相似文献   

16.
The early steps of the Mg(2+)-ATPase activity of relaxed rabbit psoas myofibrils were studied in a buffer of near-physiological ionic strength at 4 degrees C by the rapid flow quench technique. The initial ATP binding steps were studied by the ATP chase, and the cleavage and release of product steps by the Pi burst method. The data obtained were interpreted by [formula: see text] where M represents the myosin heads with or without actin interaction. This work is a continuation of our study on Ca(2+)-activated myofibrils [Houadjeto, M., Travers, F., & Barman, T. (1992) Biochemistry 31, 1564-1569]. Here the constants obtained with relaxed myofibrils were compared with those with activated myofibrils and myosin subfragment 1 (S1). We find that whereas Ca2+ increases 80X the release of products (k4), it has little effect upon the kinetics of the initial binding and cleavage steps. As with activated myofibrils and S1, the second-order binding constant for ATP (k2/K1) was about 1 microM-1 s-1 and the ATP was bound very tightly. With activated myofibrils, it was difficult to obtain an estimate for the koff for ATP(k-2) but it is much less than kcat. Here with relaxed myofibrils we estimate k-2 less than 8 x 10(-4) s-1, which is considerably smaller than kcat (0.019 s-1) and also previous estimates for this constant. The overall Kd for ATP to relaxed myofibrils is less than 8 x 10(-10) M. With S1 this Kd is about 10(-11) M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

18.
1. A method has been developed to incorporate the apoprotein of the Ca2+-activated photoprotein obelin, and mRNA purified from the hydroid Obelia, into the cytoplasm of intact human neutrophils. This was based on internal release from pH-sensitive immunoliposomes taken up initially by phagocytosis. 2. Addition of the prosthetic group of obelin, coelenterazine, to these cells containing apo-obelin or Obelia mRNA resulted in formation of active Ca2+-activated obelin. 3. The obelin formed within the neutrophils responded to the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (1 microM) and to the membrane attack complex of complement (C5B6789n). 4. The formation of the apo-obelin from mRNA within neutrophils was inhibited by over 80% in the absence of added amino acids, and by over 90% by the protein-synthesis inhibitor puromycin (100 micrograms/ml). 5. The translation of Obelia mRNA inside cells provides a method for circumventing consumption of Ca2+-activated photoproteins during cell activation or injury, and for monitoring protein synthesis in living cells.  相似文献   

19.
The lipid requirement of the (Ca2+ + Mg2+)-stimulated ATPase of human erythrocytes has been studied. The enzyme activity was lost after removal of the phospholipids using phospholipase A2 from Naja naja and serum albumin. Optimal restoration of the (Ca2+ + Mg2+)-ATPase activity in the partially lipid-depleted membranes was obtained with oleate. The reactivation was not due to the removal of a permeability barrier for ATP, since lysolecithin or cholate did not show latent activity. Reactivation was also obtained with several negatively charged phospholipids. Among the ones normally found in the erythrocyte membranes, only phosphatidyl serine reactivated significantly.  相似文献   

20.
T J Bollenbach  T Nowak 《Biochemistry》2001,40(43):13088-13096
Yeast pyruvate kinase (YPK) is regulated by intermediates of the glycolytic pathway [e.g., phosphoenolpyruvate (PEP), fructose 1,6-bisphosphate (FBP), and citrate] and by the ATP charge of the cell. Recent kinetic and thermodynamic data with Mn(2+)-activated YPK show that Mn(2+) mediates the allosteric communication between the substrate, PEP, and the allosteric effector, FBP [Mesecar, A., and Nowak, T. (1997) Biochemistry 36, 6792, 6803]. These results indicate that divalent cations modulate multiligand interactions, and hence cooperativity with YPK. The nature of multiligand interactions on YPK was investigated in the presence of the physiological divalent activator Mg(2+). The binding interactions of PEP, Mg(2+), and FBP were monitored by fluorescence spectroscopy. The binding data were subject to thermodynamic linked-function analysis to determine the magnitudes of the multiligand interactions governing the allosteric activation of YPK. The two ligand coupling free energies between PEP and Mg(2+), PEP and FBP, and FBP and Mg(2+) are 0.88, -0.38, and -0.75 kcal/mol, respectively. The two-ligand coupling free energies between PEP and Mn(2+) and FBP and Mn(2+) are more negative than those with Mg(2+) as the cation. This indicates that the interactions between the divalent cation and PEP with YPK are different for Mg(2+) and Mn(2+) and that the interaction is not simply electrostatic in nature, as originally hypothesized. The magnitude of the heterotropic interaction between the metal and FBP is similar with Mg(2+) and Mn(2+). The simultaneous binding of Mg(2+), PEP, and FBP to YPK is favored by 3.21 kcal/mol compared to independent binding. This complex is destabilized by 3.30 kcal/mol relative to the analogous YPK-Mn(2+)-PEP-FDP complex. Interpretation of K(d) values when cooperative binding occurs must be done with care as these are not simple thermodynamic constants. These data demonstrate that the divalent metal, which activates phosphoryl transfer in YPK, plays a key role in modulating the various multiligand interactions that define the overall allosteric properties of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号