首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sterile insect technique (SIT)-based pest control programs rely on the mass release of sterile insects to reduce the wild target population. In many cases, it is desirable to release only males. Sterile females may cause damage, e.g., disease transmission by mosquitoes or crop damage via oviposition by the Mediterranean fruit fly (Medfly). Also, sterile females may decrease the effectiveness of released males by distracting them from seeking out wild females. To eliminate females from the release population, a suitable sexual dimorphism is required. For several pest species, genetic sexing strains have been constructed in which such a dimorphism has been induced by genetics. Classical strains were based on the translocation to the Y chromosome of a selectable marker, which is therefore expressed only in males. Recently, several prototype strains have been constructed using sex-specific expression of markers or conditional lethal genes from autosomal insertions of transgenes. Here, we describe a novel genetic sexing strategy based on the use of Y-linked transgenes expressing fluorescent proteins. We demonstrate the feasibility of this strategy in a major pest species, Ceratitis capitata (Wiedemann), and discuss the advantages and disadvantages relative to other genetic sexing methods and potential applicability to other species.  相似文献   

2.
The Sterile Insect Technique (SIT) is an important component of area wide programs to control invading or established populations of pestiferous tephritids. The SIT involves the production, sterilization, and release of large numbers of the target species, with the goal of obtaining sterile male x wild female matings, which yield infertile eggs. A major advance in SIT involved sex-linked, genetic manipulations that allowed the production and release of male-only strains (also termed genetic sexing strains, GSS). The use of GSS avoids matings between sterile males and females, which may divert males from seeking and mating with wild females, and studies show that male-only releases result in greater suppression of wild populations than standard bisexual releases (i.e., those including both males and females). GSS based on sex-linked pupal color exist for Zeugodacus cucurbitae (Coquillett) and Bactrocera dorsalis (Hendel), two important agricultural pest species, but their rearing characteristics have not been documented in detail. The goal of the present study was to compare the pupal color sexing and bisexual strains for each of these species with respect to important rearing parameters, including egg production and eclosion of larvae from eggs (egg hatch), pupal recovery, and weight, emergence rate, and flight ability. In both species, most of these parameters were significantly greater for the bisexual strain than the GSS, and, for a given number of eggs, the production of flight-capable adults was approximately 2 times greater in the bisexual strains of both species. The potential usefulness of GSS in SIT against Z. cucurbitae and B. dorsalis is assessed based on these findings.  相似文献   

3.
Many species belonging to the order Lepidoptera are major pests in agriculture and arboriculture. The sterile insect technique (SIT) is an eco-friendly and highly efficient genetically targeted pest management approach. In many cases, it is preferable to release only sterile males in an SIT program, and efficient sexing strategies are crucial to the successful large-scale implementation of SIT. In the present study, we established 160 transgenic silkworm (Bombyx mori) lines to test the possibility of genetic sexing using a W chromosome-linked transgene, which is thought to be the best sexing strategy for lepidopteran species. One transgenic line with a female-specific expression pattern of reporter gene was obtained. The expression level of the W-linked transgene was comparable with autosomal insertions and was stable for 17 continuous generations. Molecular characterization showed this line contained a single copy of the reporter gene on the W chromosome, and the integration site was TTAG in contig W-BAC-522N19-C9. The feasibility of using a W chromosome-linked transgene demonstrated here and the possible improvements discussed will provide valuable information for other lepidopteran pests. The novel W chromosome-linked transgenic line established in this study will serve as an important resource for fundamental research with the silkworm B. mori.  相似文献   

4.
The sterile insect technique (SIT), used for the control of many tephritid fly pests, is based on the rearing and release of large numbers of sexually competitive sterile insects into a wild population. In the interest of reducing expenses and increasing SIT effectiveness, genetic sexing strains (GSS) have been developed. These strains allow the production and release of only males. The objective of our study was to assess the effects of pre-release adult exposure to methoprene and to females on the mating propensity and mating competitiveness of GSS sterile males of Anastrepha ludens (Loew) (Diptera: Tephritidae). GSS sterile males were kept on a protein-sugar (protein-fed) or a protein-sugar-methoprene diet and were exposed to different proportions of females for the normal pre-release period of 5 days. Using laboratory and field-cage bioassays, we examined the influence of methoprene and female presence on the mating success of sterile males of 3–9 days old, in competition for wild females with untreated males and with wild males. Methoprene and female exposure had no significant effects on male mating success in the laboratory, whereas age had a positive relationship with the number of copulations observed. However, in field-cage bioassays, males exposed to females obtained a higher number of copulations than unexposed control males. Possible implications of these findings for programs that use GSS and especially for the campaign against Mexican fruit flies are discussed.  相似文献   

5.
在过去的几十年中,昆虫不育技术(sterile insect technique, SIT)已被用于防治农业害虫和人类健康相关的病媒害虫。相较于传统的农药控制策略,昆虫不育技术具有物种特异性和环境友好型等特点。通过释放不育雄虫的昆虫不育技术的主要障碍是在大规模饲养阶段将雄性与雌性分离,从而提高这些防治方法的成本效率,并防止释放携带和传播疾病的雌性群体。目前大多数针对双翅目害虫的遗传防治策略没有进行性别分离,少数害虫性别分离方法是基于蛹的大小或者雌雄蛹羽化时间差异进行人工识别和机械识别分离。双翅目昆虫性别决定及分化分子机制多种多样,其性别决定主要信号差异巨大,其多种性别决定基因已用于性别分离系统的开发。性比失衡性别分离策略通过破坏性别决定途径关键基因的表达获得雄性偏向后代,雌性条件性致死分离策略利用性别决定关键基因的雌雄选择性剪接差异实现性别分离,这两种性别分离策略目前正在害虫不育防治中接受大规模饲养应用评估,而基于双翅目昆虫雌雄性二态和基因标记发展的可视化性别分离策略也已成功实现多种害虫的性别分离。我们对性比失衡分离策略、雌性条件性致死分离策略和可视化性别分离策略在双翅目害虫中的研究进展进行了综述,重点评估了这些方法在雄虫大规模饲养和释放的应用潜力,以期在更完善的性别分离技术支持下为害虫防治研究取得更多突破性进展。  相似文献   

6.
The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.  相似文献   

7.
The sterile insect technique (SIT) is a method of eradicating insects by releasing mass-reared sterilized males into fields to reduce the hatchability of eggs laid by wild females that have mated with the sterile males. SIT requires mass-production of the target insect, and maintenance of the quality of the mass-reared insects. The most important factor is successful mating between wild females and sterile males because SIT depends on their synchronized copulation. Therefore, understanding the mating systems and fertilization processes of target insects is prerequisite. Insect behavior often has circadian rhythms that are controlled by a biological clock. However, very few studies of relationships between sterile insect quality and circadian rhythm have been performed compared with the amount of research on the mating ability of target insects. The timing of male copulation attempts with receptivity of females is key to successful mating between released males and wild females. Therefore, we should focus on the mechanisms controlling the timing of mating in target insects. On the other hand, in biological control projects, precise timing of the release of natural enemies to attack pest species is required because behavior of pests and control agents are affected by their circadian rhythms. Involving both chronobiologists and applied entomologists might produce novel ideas for sterile insect quality control by synchronized sex between mass-reared and wild flies, and for biological control agent quality by matching timing in activity between predator activity and prey behavior. Control of the biological clocks in sterile insects or biological control agents is required for advanced quality control of rearing insects.  相似文献   

8.
The sterile insect technique (SIT), when used for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), generally relies on the release of sterile flies of only the male sex. Male selection is achieved through the use of a genetic sexing strain (GSS) in which females are killed by heat treatment in the generation prior to release. Transgenic sexing strains (TSS) have been developed that perform the same function of female-lethality, this time by withholding tetracycline (or related compounds) from the larval diet. The use of TSS may allow for certain problems associated with conventional GSS, such as strain instability and reduced productivity in mass-rearing, to be avoided. The performance, and principally the sexual competitiveness, of released male flies is important for the success of an SIT control programme. This study describes field cage experiments in which the competitiveness of males from a TSS (OX3376B) was compared with that of a conventional GSS (VIENNA-8) and two wild-type strains (TOLIMAN and ARG). When competing for female mates with wild-type males, OX3376B male performance was acceptable. When OX3376B males competed directly for mates with VIENNA-8 males, VIENNA-8 slightly outperformed the TSS males. Parallel tests, in which wild-type males competed with either OX3376B or VIENNA-8 males, showed that males from both sexing strains were highly competitive with wild-type males. These results suggest that OX3376B in particular, and TSS in general, show sufficiently good mating competitiveness to merit further research into their suitability for eventual use in SIT programmes.  相似文献   

9.
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT) applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS) for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic) to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation.  相似文献   

10.
Re-engineering the sterile insect technique   总被引:3,自引:0,他引:3  
The mass release of sterile insects (the Sterile Insect Technique, SIT) is a highly effective area-wide method of pest control with a low environmental impact. SIT relies on the sterilization by irradiation of large numbers of insects. This has unavoidable costs in terms of the fitness of the irradiated insects and the financial requirements of constructing and operating the radiation facility. In many cases it is considered important to release only males, but large-scale sex-separation is also problematic. I have proposed that both of these difficulties can be overcome by using engineered strains of insects carrying a dominant, repressible, lethal gene or genetic system. As a proof of principle, my group and others have constructed strains of Drosophila melanogaster with the required genetic properties.  相似文献   

11.
Fruit fly pest species have been successfully controlled and managed via the Sterile Insect Technique (SIT), a control strategy that uses infertile matings of sterile males to wild females to reduce pest populations. Biological efficiency in the field is higher if only sterile males are released in SIT programs and production costs are also reduced. Sexing strains developed in the Mediterranean fruit fly Ceratitis capitata (medfly) through classical genetics are immensely beneficial to medfly SIT programs but exhibit reduced fertility and fitness. Moreover, transfer of such classical genetic systems to other tephritid species is difficult. Transgenic approaches can overcome this limitation of classical genetic sexing strains (GSSs), but had resulted so far in transgenic sexing strains (TSSs) with dominant lethality at late larval and pupal stages. Here we present a transgene-based female-specific lethality system for early embryonic sexing in medfly. The system utilizes the sex-specifically spliced transformer intron to restrict ectopic mRNA translation of the pro-apoptotic gene hidAla5 to females only. The expression of this lethal effector gene is driven by a tetracycline-repressible transactivator gene tTA that is under the control of promoters/enhancers of early-acting cellularization genes. Despite observed position effects on the sex-specific splicing, we could effectively establish this early-acting transgenic sexing system in the medfly C. capitata. After satisfactory performance in large scale tests, TSSs based on this system will offer cost-effective sexing once introduced into SIT programs. Moreover, this approach is straight forward to be developed also for other insect pest and vector species.  相似文献   

12.
Methoprene (a mimic of juvenile hormone) treatment can reduce the time required for sexual maturation in Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) males under laboratory conditions, supporting its use as a treatment for sterile males within the context of the sterile insect technique (SIT). We evaluated sexual behaviour, mating competitiveness of methoprene-treated males, and female readiness to mate after methoprene-treatment in field cages. The study involved two strains of A. fraterculus from Argentina and Peru, which show several polymorphisms in relation to their sexual behaviour. We also analyzed whether methoprene treatment affected male and/or female behaviour in the same way in these two strains. Methoprene-treated males were equally competitive with untreated mature males, and became sexually competitive 6 days after emergence (3–4 days earlier than untreated males). In contrast, methoprene did not induce sexual maturation in females or, at least, it did not induce a higher rate of mating in 7-day-old females. These results were observed both for the Argentina and the Peru strains. Altogether, our results indicate that methoprene treatment produces sexually competitive males in field cages. In the absence of a genetic sexing system, and when sterile males and females of A. fraterculus are released simultaneously, the fact that females do not respond as do males to the methoprene treatment acts as a physiological sexing effect. Therefore, in the presence of mainly sexually immature sterile females, released sexually mature sterile males would have to disperse in search of wild fertile females, thereby greatly reducing matings among the released sterile insects and thus enhancing sterile insect technique efficiency.  相似文献   

13.
Handler AM 《Genetica》2002,116(1):137-149
The genetic manipulation of non-drosophilid insect species is possible by the creation of recombinant DNA constructs that can be integrated into host genomes by several transposon-based vector systems. This technology will allow the development and testing of a variety of systems that can improve existing biological control methods, and the development of new highly efficient methods. For programs such as sterile insect technique (SIT), transgenic strains may include fluorescent protein marker genes for detection of released insects, and conditional gene expression systems that will result in male sterility and female lethality for genetic sexing. Conditional expression systems include the yeast GAL4 system and the bacterial Tet-off and Tet-on systems that can, respectively, negatively or positively regulate expression of genes for lethality or sterility depending on a dietary source of tetracycline. Importantly, strains for male sterility must also incorporate an effective system for genetic sexing, since typically, surviving females would remain fertile. Models for the use of these expression systems and associated genetic material come from studies in Drosophila and, while many of these systems should be transferable to other insects, continued research will be necessary in insects of interest to clone genes, optimize germ-line transformation, and perform vector stability studies and risk assessment for their release as transgenic strains.  相似文献   

14.
Franz G 《Genetica》2002,116(1):73-84
The sterile insect technique (SIT) is an environmentally safe technology to control insect pests. To improve this technology, genetic sexing strains (GSS) have been developed for the Mediterranean fruit fly, Ceratitis capitata. Such strains are based on Y-autosome translocations linking a selectable marker to the male sex and their long-term stability, especially under large-scale mass rearing conditions, is threatened by genetic recombination in the heterozygous males. We have measured male recombination in order to be able to construct GSS that are more stable. Our results show that male recombination occurs at very low frequencies, that is, below 1% per generation. Furthermore, recombination in medfly males occurs premeiotically. By selecting strains where the Y-autosome translocation breakpoint and the selectable marker are closely linked, the deleterious effects of recombination on the stability of GSS can be minimized. In such strains recombination is reduced by ca. 80% as compared to previously studied GSS. Although recombinants still occur at very low frequencies they still pose a threat to the integrity of the sexing system if they possess a selective advantage. Under mass rearing condition such recombinants will accumulate according to their relative fitness and additional measures, such as improved mass rearing strategies, are required to preserve the accuracy of the sexing system. As a conclusion it is shown that current GSS are stable enough to allow mass rearing at levels exceeding 1000 million male medflies per week.  相似文献   

15.
The Mediterranean fruit fly (medfly, Ceratitis capitata Wiedemann) is a pest of over 300 fruits, vegetables and nuts. The sterile insect technique (SIT) is a control measure used to reduce the reproductive potential of populations through the mass release of sterilized male insects that mate with wild females. However, SIT flies can display poor field performance, due to the effects of mass-rearing and of the irradiation process used for sterilization. The development of female-lethal RIDL (release of insects carrying a dominant lethal) strains for medfly can overcome many of the problems of SIT associated with irradiation. Here, we present life-history characterizations for two medfly RIDL strains, OX3864A and OX3647Q. Our results show (i) full functionality of RIDL, (ii) equivalency of RIDL and wild-type strains for life-history characteristics, and (iii) a high level of sexual competitiveness against both wild-type and wild-derived males. We also present the first proof-of-principle experiment on the use of RIDL to eliminate medfly populations. Weekly releases of OX3864A males into stable populations of wild-type medfly caused a successive decline in numbers, leading to eradication. The results show that genetic control can provide an effective alternative to SIT for the control of pest insects.  相似文献   

16.
For ensuring the effectiveness of sterile insect technique (SIT) programmes, maintaining the reproductive competitiveness and dispersal ability of mass‐reared sterile males is essential. Inadvertent selection is an important genetic process that frequently occurs during mass rearing to produce sterile males. We investigated the effect of mass‐rearing conditions on the responsiveness to sex pheromones and spontaneous flight activity of males of the sweetpotato weevil Cylas formicarius (Coleoptera: Brentidae). There were no significant differences in the responsiveness to sex pheromones and spontaneous flight activity between wild and mass‐reared strains. These results indicate that mass‐reared strains of C. formicarius might not cause serious problems for implementing SIT programmes.  相似文献   

17.
Robinson AS 《Genetica》2002,116(1):5-13
The introduction of genetic sexing strains (GSS) into medfly, Ceratitis capitata(Wiedemann), sterile insect technique (SIT) programmes started in 1994 and it was accompanied by extensive evaluation of the strains both in field cages and in open field situations. Two male-linked translocation systems, one based on pupal colour, wp, and the other based on temperature sensitivity, tsl, have been used in medfly SIT programmes and they have quite different impacts on mass rearing strategy. In strains based on tsl, female zygotes are killed using high temperature and for wpstrains, female and male pupae are separated based on their colour. In all these systems the colony females are homozygous for the mutation requiring that the mutation is not too deleterious and the males are also semi-sterile due to the presence of a male-linked translocation. Managing strain stability during large-scale mass rearing has presented some problems that have been essentially solved by selecting particular translocations for GSS and by the introduction of a filter rearing system (FRS). The FRS operates by removing from the colony any recombinant individuals that threaten the integrity of the strain. The use of GSS opens up the possibility of using the SIT for suppression as opposed to eradication and different radiation strategies can be considered. Some of the many field trials of the strains that were carried out before the strains were introduced into operational programmes are reviewed and an overview is given of their current use.  相似文献   

18.
苹果蠹蛾不育昆虫释放技术研究进展   总被引:2,自引:1,他引:1  
刘伟  徐婧  张润志 《昆虫知识》2012,49(1):268-274
不育昆虫释放技术(sterile insect technique,SIT)是一种环境友好、可作为大面积害虫综合治理(AW-IPM)的防治技术,是以压倒性比例释放不育昆虫来减少田间同种害虫繁殖量的害虫治理方法。苹果蠹蛾Cydia pomonella(L.)是世界重要的梨果类害虫,现已入侵世界5洲71国。本文综述了苹果蠹蛾大规模饲养技术、辐射不育技术、释放技术3个关键环节的研究与技术进展,主要包括:苹果蠹蛾人工饲料、实验种群建立、饲养设备与条件、收集和质量评估、长距离运输、辐射源与设备、辐射剂量与敏感性、释放方法、释放标记和释放量等,并介绍了各国采用SIT技术的应用效果。苹果蠹蛾在我国新疆、甘肃、宁夏、内蒙、黑龙江、吉林6个省区发现,对我国苹果产业安全生产构成严重威胁,我国很有必要引进并建立苹果蠹蛾SIT防治技术体系。  相似文献   

19.
Traditional chemically based methods for insect control have been shown to have serious limitations, and many alternative approaches have been developed and evaluated, including those based on the use of different types of mutation. The mutagenic action of ionizing radiation was well known in the field of genetics long before it was realized by entomologists that it might be used to induce dominant lethal mutations in insects, which, when released, could sterilize wild female insects. The use of radiation to induce dominant lethal mutations in the sterile insect technique (SIT) is now a major component of many large and successful programs for pest suppression and eradication. Adult insects, and their different developmental stages, differ in their sensitivity to the induction of dominant lethal mutations, and care has to be taken to identify the appropriate dose of radiation that produces the required level of sterility without impairing the overall fitness of the released insect. Sterility can also be introduced into populations through genetic mechanisms, including translocations, hybrid incompatibility, and inherited sterility in Lepidoptera. The latter phenomenon is due to the fact that this group of insects has holokinetic chromosomes. Specific types of mutations can also be used to make improvements to the SIT, especially for the development of strains for the production of only male insects for sterilization and release. These strains utilize male translocations and a variety of selectable mutations, either conditional or visible, so that at some stage of development, the males can be separated from the females. In one major insect pest, Ceratitis capitata, these strains are used routinely in large operational programs. This review summarizes these developments, including the possible future use of transgenic technology in pest control.  相似文献   

20.
Pest control by genetic manipulation of sex ratio   总被引:3,自引:0,他引:3  
We model the release of insects carrying an allele at multiple loci that shifts sex ratios in favor of males. We model two approaches to sex ratio alteration. In the first (denoted SD), meiotic segregation (or sperm fertility) is distorted in favor of gametes carrying the male-determining genetic element (e.g., Y-chromosome). It is assumed that any male carrying at least one copy of the SD allele produces only genotypically male offspring. In the second approach (denoted PM), the inserted allele alters sex ratio by causing genetically female individuals to become phenotypically male. It is assumed that any insect carrying at least one copy of the PM allele is phenotypically male. Both approaches reduce future population growth by reducing the number of phenotypic females. The models allow variation in the number of loci used in the release, the size of the release, and the negative fitness effect caused by insertion of each sex ratio altering allele. We show that such releases may be at least 2 orders of magnitude more effective than sterile male releases (SIT) in terms of numbers of surviving insects. For example, a single SD release with two released insects for every wild insect and a 5% fitness cost per inserted allele could reduce the target population to 1/1000th of the no-release population size, whereas a similar-sized SIT release would only reduce the population to one-fifth of its original size. We also compare these two sex ratio alteration approaches to a female-killing (FK) system and the sterile male technique when there are repeated releases over a number of generations. In these comparisons, the SD approach is the most efficient with equivalent pest suppression achieved by release of approximately 1 SD, 1.5-20 PM, 2-70 FK, and 16-3,000 SIT insects, depending on conditions. We also calculate the optimal number of SD and PM allele insertions to be used under various conditions, assuming that there is an additional genetic load incurred for each allelic insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号