首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RHC 80267 inhibits diglyceride lipase activity in microsomes from canine platelets (1). Chau and Tai (2) reported that RHC 80267 prevents the transient accumulation of monoglyceride in thrombin-stimulated human platelets, while leaving arachidonate release unimpaired. In contrast, we find that while the drug inhibits both diglyceride lipase (I50=15 μM) and monoglyceride lipase (I50=11 μM) activities in platelet microsomes, it is ineffective when added to intact platelets. The transient intermediates in the diglyceride lipase pathway, 1,2-diglyceride and 2-monoglyceride, both accumulated after thrombin stimulation of intact platelets treated with RHC 80267, and arachidonate release was not inhibited. We conclude that RHC 80267 cannot be used to evaluate the diglyceride lipase pathway in intact platelets.  相似文献   

2.
Monoglyceride and diglyceride lipases from human platelet microsomes   总被引:1,自引:0,他引:1  
In the present study, we have characterized the properties of both diglyceride lipase (lipoprotein lipase, EC 3.1.1.24) and monoglyceride lipases (acylglycerol lipase, EC 3.1.1.23) in an attempt to assess the potential roles of these two enzymes in the release of arachidonate in activated human platelets. Diglyceride lipase exhibited maximal activity at pH 3.5, whereas monoglyceride lipase showed optimal activity at pH 7.0. Neither of the lipases were inhibited by EDTA or stimulated by Ca2+, Mg2+ or Mn2+. Both enzymes, however, were strongly inhibited by Hg2+ and Cu2+, indicating the involvement of sulfhydryl groups in catalytic activity. This suggestion was further supported by their sensitivity toward sulfhydryl inhibitors, with monoglyceride lipase being more susceptible to inhibition. Both lipases were found to be inhibited to a different degree by a variety of antiplatelet drugs blocking aggregation and arachidonate release. Kinetic studies indicated that dichotomous metabolism of diacylglycerol to monoacylglycerol and to phosphatidic acid could occur concurrently, since the apparent Km values for diglyceride lipase and for diglyceride kinase were comparable. Further studies showed that the specific activity of monoglyceride lipase was at least 100-fold higher than that of diglyceride lipase, indicating that the rate-limiting step in the release of arachidonate was the reaction catalyzed by diglyceride lipase.  相似文献   

3.
Release of arachidonate from 2-arachidonyl diglyceride by human platelet microsomes was investigated. Diglycerides labeled with 14C-stearate at sn-1 and with 3H-arachidonate at sn-2 were used as a substrate for microsomal diglyceride lipase. Diglyceride was deacylated first at sn-1 as evidenced by the accumulation of 2-arachidonyl monoglyceride but not of 1-stearoyl monoglyceride. Subsequent release of arachidonate from monoglyceride required the action of a monoglyceride lipase. Studies on substrate specificity indicated that diglyceride lipase utilized 2-arachidonyl diglyceride as the best substrate.  相似文献   

4.
It has been generally considered that highly specific liberation of arachidonic acid is induced upon the stimulation of the platelets, although the molecular mechanism of the regulation of its action has not been well understood. An aim of the present study is to clarify the role of phospholipase A2 in the arachidonic acid metabolism within human platelets. Phosphatidylcholine or phosphatidylethanolamine with arachidonate at the sn-2 position of glycerol was cleaved efficiently by phospholipase A2 activity in homogenates as well as in the cytoplasmic fraction of human platelets, leading to the selective liberation of free arachidonate, whereas phospholipids with linoleate were hardly hydrolyzed under the same conditions. Double-reciprocal plots of kinetic data further strengthened the conclusion that human platelet phospholipase A2 showed high selectivity for arachidonoyl residue. This enzyme may play a crucial role in the intracellular metabolism of the arachidonate of phospholipids.  相似文献   

5.
Heat shock has a profound influence on the metabolism and behavior of eukaryotic cells. We have examined the effects of heat shock on the release from cells of arachidonic acid and its bioactive eicosanoid metabolites, the prostaglandins and leukotrienes. Heat shock (42-45 degrees) increased the rate of arachidonic acid release from human, rat, murine, and hamster cells. Arachidonate accumulation appeared to be due, at least partially, to stimulation of a phospholipase A2 activity by heat shock and was accompanied by the accumulation of lysophosphatidyl-inositol and lysophosphatidylcholine in membranes. Induction of arachidonate release by heat did not appear to be mediated by an increase in cell Ca++. Stimulation of arachidonate release by heat shock in hamster fibroblasts was quantitatively similar to the receptor-mediated effects of alpha thrombin and bradykinin. The effects of heat shock and alpha thrombin on arachidonate release were inhibited by glucocorticoids. Increased arachidonate release in heat-shocked cells was accompanied by the accelerated accumulation of cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha and by 5-lipoxygenase metabolite leukotriene B4. Elevated concentrations of arachidonic acid and metabolites may be involved in the cytotoxic effects of hyperthermia, in homeostatic responses to heat shock, and in vascular and inflammatory reactions to stress.  相似文献   

6.
Two inhibitors of thrombin-stimulated arachidonic acid release from platelets, p-bromophenacyl bromide and mepacrine, were examined for their ability to inhibit the phospholipase C-diglyceride lipase pathway. This pathway involves hydrolysis of phosphatidylinositol to diglyceride, followed by release of arachidonate from diglyceride, and has been proposed as an alternative or addition to phospholipase A2 as a mechanism for arachidonate release. p-Bromophenacyl bromide, a potent alkylating agent, was shown to cause a time-dependent inhibition of phosphatidylinositol-specific phospholipase C activity in crude platelet extracts; the inhibition was >90% after 15 min incubation with 100 μmp-bromophenacyl bromide. However, p-bromophenacyl bromide was also shown to destroy about one-half of the titratable sulfhydryl groups in whole platelets under similar conditions. The lack of specificity of p-bromophenacyl bromide was further demonstrated by our finding that thrombin-stimulated serotonin release was also inhibited by conditions inhibiting arachidonate release and that diglyceride lipase activity was decreased by higher levels of p-bromophenacyl bromide. Mepacrine was found to inhibit the activity of phosphatidylinositol-specific phospholipase C and had a greater effect at low substrate concentrations. The loss of [14C]arachidonate from both endogenous phosphatidylinositol and phosphatidylcholine in intact platelets was also inhibited. Thrombin-stimulated serotonin release was impaired by mepacrine also but only at a concentration 10-fold greater than that required to prevent arachidonate release. Thus we have shown that these two agents which inhibit arachidonate release are inhibitors of the phosphatidylinositol-specific phospholipase C-diglyceride lipase pathway. The multiple effects produced by both compounds limit their utility as agents to examine the source and mechanism of arachidonate release.  相似文献   

7.
Fura 2, a new generation calcium indicator, has a 30 fold brighter fluorescence than Quin 2, shows wavelength shifts upon calcium binding and has a relatively low buffering capacity for free calcium. Quin 2, the most widely used fluorophore, on the other hand, shows no wavelength shifts and has a very high affinity for free calcium. Therefore, we have compared the relative merits of these two fluorophores for monitoring agonist induced alterations in platelet cytosolic calcium. Platelets loaded with Fura 2 showed a significant rise in cytosolic calcium when stirred with agonists such as epinephrine, arachidonate and thrombin, whereas Quin 2 loaded platelets demonstrated a rise in cytosolic calcium only with thrombin stimulation. A rise in agonist induced calcium in Fura 2 loaded platelets was prevented when the cells were exposed first to antagonists such as aspirin or prostaglandin E1. Arachidonate refractory platelets, upon stirring with a single agonist, did not show a significant elevation in cytosolic calcium. However, when refractory platelets were first exposed to epinephrine and then challenged with arachidonate, they revealed a significant elevation in cytosolic calcium. Unlike Quin 2, Fura 2 at the highest concentration tested did not inhibit platelet function. Improved properties of Fura 2 suggest that it may be a useful agent to study agonist induced alterations in cytosolic calcium levels in blood platelets.  相似文献   

8.
Platelet stimulation by thrombin or Ca2+ ionophore induces mobilization of arachidonate from lipid stores. We have previously shown that, in [14C]arachidonic acid-prelabelled resting platelets, [14C]arachidonate was transferred from diacyl-sn-glycerophosphocholine to ethanolamine and choline-containing ether phospholipids. This transfer reached an equilibrium after 5 h incubation [Colard, Breton & Bereziat (1984a) Biochem. J. 222, 657-662]. [14C]Arachidonate-prelabelled platelets having reached this transfer equilibrium were used to study the mobilization of arachidonate in etheracyl and diacyl phospholipids. Upon thrombin stimulation, arachidonate decreased in diacyl-sn-glycero-3-phosphoinositol, in alkylacyl- and diacyl-sn-glycero-3-phosphocholine and increased in alkenylacyl- and diacyl-sn-glycero-3-phosphoethanolamine. Upon challenge with Ca2+ ionophore A23187, arachidonate decreased in diacyl-sn-glycero-3-phosphoethanolamine, in diacyl- and alkylacyl-sn-glycero-3-phosphocholine and increased in alkenylacyl-sn-glycero-3-phosphoethanolamine. We also compared arachidonate mobilization in platelets stimulated immediately after [14C]arachidonic acid chase with platelets stimulated after 5 h reincubation. We observed that the arachidonate newly incorporated into diacyl-sn-glycero-3-phosphocholine and triacylglycerols was rapidly released upon stimulation. This suggests the presence in these two lipids of a rapidly-turning-over arachidonate pool.  相似文献   

9.
Thrombin-induced changes in arachidonate content of platelet phospholipids were quantitated to establish the ultimate origins of this eicosanoid precursor. Fifteen seconds following thrombin addition (15 U/5 X 10(9) platelets), phosphatidylcholine lost 11.8 nmol of arachidonate and phosphatidylethanolamine lost 10.5 nmol. Arachidonate in phosphatidate, phosphatidylinositol, and phosphatidylinositol-4,5-bisphosphate combined decreased by 11.0 nmol. Increases in free and oxygenated arachidonate (41 nmol) exceeded decreases in inositides. Thus phospholipase A2 released at least twice as much arachidonate as phospholipase C-diglyceride lipase. Phosphatidylinositol-4-phosphate levels remained unchanged upon stimulation. Therefore, increases in phosphatidylinositol-4,5-bisphosphate indicated the minimum rate of phosphorylation of phosphatidylinositol to resynthesize phosphatidylinositol-4,5-bisphosphate, following stimulus-induced breakdown by phospholipase C. Phosphatidylinositol-4, 5-bisphosphate increased 1.4 nmol between 10 and 15 sec following thrombin, markedly less than phosphatidylinositol decreased (2.1 nmol). This could be due to phospholipase A2, in addition to phospholipase C, acting directly on phosphatidylinositol to a greater extent than estimated by accumulation of lysophosphatidylinositol, degraded rapidly by lysophospholipase. Thus, upon high-dose thrombin stimulation of human platelets inositide metabolism via phospholipase C directs initial formation of intracellular second messengers, and sequentially, or in parallel, arachidonate release by phospholipase A2 supplies the larger proportion of arachidonate for syntheses of eicosanoids involved in intercellular communication.  相似文献   

10.
The effect of extracellular Na+ removal and replacement with other cations on receptor-mediated arachidonate release in platelets was studied to investigate the role of Na+/H+ exchange in this process. Replacement with choline+, K+, N-methylglucamine+ (which abolished the thrombin-induced pHi rise) or Li+ (which allowed a normal thrombin-induced pHi rise) significantly decreased arachidonate release in response to all concentrations (threshold to supra-maximal) of thrombin and collagen. This inhibition was not reversed by NH4Cl (10 mM) addition, which raised the pHi in the absence of Na+, but, on the contrary, NH4Cl addition further decreased the extent of thrombin- and collagen-induced arachidonate release, as well as decreasing 'weak'-agonist (ADP, adrenaline)-induced release and granule secretion in platelet-rich plasma. No detectable pHi rises were seen with collagen (1-20 micrograms/ml) and ADP (10 microM) in bis-(carboxyethyl)carboxyfluorescein-loaded platelets. Inhibition of thrombin-induced pHi rises was seen with 0.5-5 microM-5-NN-ethylisopropylamiloride (EIPA), but at these concentrations EIPA had little effect on thrombin-induced arachidonate release. At higher concentrations such as those used in previous studies (20-50 microM), EIPA inhibited aggregation/release induced by collagen and ADP in Na+ buffer as well as in choline+ buffer (where there was no detectable exchanger activity), suggesting that these concentrations of EIPA exert 'non-specific' effects at the membrane level. The results suggest that (i) Na+/H+ exchange and pHi elevations are not only necessary, but are probably inhibitory, to receptor-mediated arachidonate release in platelets, (ii) inhibition of receptor-mediated release in the absence of Na+ is most likely due to the absent Na+ ion itself, and (iii) caution should be exercised in the use of compounds such as EIPA, which, apart from inhibiting the Na+/H+ exchanger, have other undesirable and misleading effects in platelets.  相似文献   

11.
Tetradecanoylphorbol acetate (TPA) activates primarily only the protein kinase C pathway not the calcium ion-dependent pathway in platelets. The net effect of this split activation is that only the pseudopodal cytoskeleton assembles, not the contractile cytoskeleton needed for rapid secretion. In this study, platelets were first activated with TPA, then activated secondarily with either thrombin or arachidonate and the subsequent dense body secretion, calcium-ion mobilization, protein phosphorylation and cytoskeletal assembly compared to these same processes in control platelets activated solely with either thrombin or arachidonate. Secretion was reduced as the length of time between the primary and secondary activation was increased; but at a 2-3 min interval, where the activation by TPA was essentially complete, the reduction in the total radiolabeled serotonin secreted was small. Furthermore, nearly normal cytosolic calcium-ion increases, phosphorylation of myosin light chain and contractile cytoskeletal development were induced by thrombin or arachidonate after this interval. Prior treatment of the platelets with 100 microM acetylsalicylate to block the cyclooxygenase-dependent pathway caused minor reduction in dense-body secretion induced by TPA or thrombin or the combination of both, but otherwise the relative results were comparable to the untreated platelets. Therefore, short-term prior activation of gel-filtered platelets with TPA, even at concentrations in excess of 100-times that required to saturate protein kinase C, does not prevent normal activation of the calcium ion dependent processes through either the cyclooxygenase-dependent or -independent pathway. Longer-term preincubations with TPA differentially inhibit the secretion response induced by thrombin and arachidonate.  相似文献   

12.
Thrombin stimulated rapid formation of diacylglycerol, inositol 1,4,5-trisphosphate (IP3) and thromboxane B2 (TXB2) in human platelets. Formation of diacylglycerol and IP3 appeared to precede that of TXB2. Activation of protein kinase C by diacylglycerol combining with Ca+2 mobilization by IP3 has been implicated in mediating arachidonate release. However, addition of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) to platelet suspension did not inhibit thrombin-stimulated arachidonate release and TXB2 synthesis, whereas addition of the Ca+2 antagonist, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8) or the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) abolished arachidonate release. The correlation of IP3 production with arachidonate release on increasing the concentrations of thrombin was further examined. IP3 production reached near maximum at 0.2 U/ml, whereas TXB2 synthesis continued to increase at 1 U/ml. These results suggest that protein kinase C activation may not mediate arachidonate release and that Ca+2 mobilization by IP3 may only partially account for arachidonate release in platelets stimulated with relatively high concentrations of thrombin.  相似文献   

13.
Human platelets release about 5 fold more arachidonate than rat platelets when they ar triggered with a high dose of thrombin. Total arachidonate content of the phospholipids was not significantly different between the two species. In contrast, phosphatidylcholine (PC) from human platelets exhibited twice more arachidonate than PC from rat platelet and opposite arachidonate contents were found in phosphatidylethanolamine. Moreover, rat platelet PC was very rich in disaturated species, primarily dipalmitoyl whereas high levels of oleate and linoleate were present in human platelets PC. The differences in the fatty acids content of the two species are the result of CoA-independent and CoA-dependent transacylase activities which are more efficient in rat than in human platelets and could account for the low level of arachidonate released from rat platelets.  相似文献   

14.
Concentrations (1 to 20 microM) of 1-oleoyl-lysophosphatidic acid which alone do not affect platelet metabolism of arachidonic acid, do augment the effects of suboptimal concentrations of thrombin on the formation of [14C]phosphatidic acid and the production of [14C]arachidonate metabolites from platelets prelabeled with [14C]arachidonate. The effect on [14C]phosphatidate occurs with concentrations of thrombin (0.1 unit/ml) which are lower than those (0.2 unit/ml) needed to observe the effects on [14C]arachidonate metabolites. The effect of 1-oleoyl-lysophosphatidic acid (10 microM) plus thrombin (0.2 unit/ml) on the formation of phosphatidic acid temporally precedes the production of arachidonate metabolites consistent with a sequential activation of phosphatidylinositol-specific phospholipase C and phospholipase A2 activities. Preincubation of platelets with (32P)orthophosphate shows that the phosphatidic acid formed by 1-oleoyl-lysophosphatidic acid (10 microM) plus thrombin (0.2 unit/ml) is derived from phosphatidylinositol. The Ca2+-ionophoretic properties of lysophosphatidic acid might explain the accumulation of phosphatidic acid since Ca2+ prevents the conversion of phosphatidic acid to phosphatidylinositol. That effect of lysophosphatidic acid is inhibited by prostacyclin, possibly through a cyclic-AMP-mediated effect on calcium homeostasis.  相似文献   

15.
Previous studies have demonstrated an inhibition of agonist-induced inositol phospholipid breakdown and intracellular Ca2+ ([Ca2+]i) mobilization by phorbol esters in platelets. In this study, we have examined the effect of phorbol 12-myristate 13-acetate (PMA) on agonist-induced granule secretion and correlated it with agonist-induced [Ca2+]i mobilization, arachidonate and thromboxane (Tx) release in human platelets. With increasing times of incubation with PMA (10 s-5 min), the rise in [Ca2+]i induced by thrombin and the TxA2 mimetic, U46619, was increasingly inhibited (90-100% with 5 min incubation) and, correlating with this, thrombin-induced [3H]arachidonate, TxB2 and beta-thromboglobulin (beta TG) release were also inhibited. In addition, the conversion of exogenously added arachidonate to TxB2 was inhibited (50-80%) by a 10 s-5 min pretreatment with PMA. However, secretion of 5-hydroxy[14C]tryptamine (5HT) induced by thrombin or U46619 was not inhibited by 10 s-2 min incubations with PMA and, on the contrary, with low agonist concentrations, was potentiated by PMA in the absence of a significant rise in [Ca2+]i or endogenous Tx formation, to levels significantly greater than or equal to the sum of that obtained when agonist and PMA were added separately. With longer times of incubation with PMA (5 min), these synergistic effects became less pronounced as inhibitory effects of PMA on agonist-induced [14C]5HT secretion became apparent. The results indicate that, while PMA may cause an inhibition of agonist-induced [Ca2+]i mobilization resulting in an inhibition of agonist-induced arachidonate, TxB2 and beta TG release, its effects on agonist-induced 5HT secretion may be complicated by [Ca2+]i-independent synergistic effects of agonist and PMA.  相似文献   

16.
The effect of (R,R,R)-alpha-tocopherol on agonist-stimulated arachidonate release and cellular lipids was investigated in cultured human umbilical cord endothelial cells. Endothelial cells in culture incorporate added tocopherol in a dose-dependent manner at both physiological (23.2 microM) or pharmacological (92.8 microM) concentrations which were well tolerated by the cells, as judged by unaltered cell number and viability. Two experiments were conducted in which cells were either incubated with (R,R,R)-alpha-tocopherol followed by labelling with [1-14C]arachidonic acid or they were labelled with arachidonate followed by incubation with tocopherol. Irrespective of the sequence of incubation with arachidonate and tocopherol, (R,R,R)-alpha-tocopherol-enriched cells released significantly more labelled arachidonate when stimulated with thrombin (2.5 U/ml) or ionophore A23187 (1 microM) for 10 min. The magnitude of [1-14C]arachidonate release was higher from ionophore A23187 stimulation than from thrombin stimulation, but the trend of increased arachidonate release in tocopherol-enriched cells was the same. Results from these studies demonstrate that (R,R,R)-alpha-tocopherol can stimulate arachidonate release in human endothelial cells. This observation is in direct contrast to the role of tocopherol, which has been shown to inhibit platelet and cardiac phospholipase A2 activity in rats, and to reduce thrombin-stimulated thromboxane release in rat platelets.  相似文献   

17.
The mass of total arachidonate released from phospholipids upon agonist stimulation of the cell and the fraction of released arachidonate which is converted to icosanoids are two parameters of arachidonate metabolism which have been difficult to quantitate because the mass of arachidonate released upon cell stimulation is very low. We have been able to quantitate both of these parameters under a variety of experimental conditions using a unique essential fatty acid-deficient mouse fibrosarcoma cell line (EFD-1), which when repleted with arachidonate, produces prostaglandin E2 (PGE2). Because there is no endogenous pool of arachidonate in these cells, the specific activity of exogenous arachidonate does not change upon incorporation into cells, an advantage which permits mass determination of very small quantities of arachidonate directly from radioactive counts. EFD-1 cells were incubated with various concentrations of [14C]arachidonate (for release studies) or unlabeled arachidonate (for PGE2 radioimmunoassays) for 24 h and then stimulated with bradykinin. The time courses for arachidonate release and PGE2 production demonstrated that free arachidonate was rapidly converted to PGE2 with plateau levels attained for both parameters within 240 s of agonist exposure for 2 microM and for 10 microM arachidonate-repleted cultures. There was a linear relationship (r = 0.94) between the mass of arachidonate in the cell and the mass of arachidonate released upon stimulation, up to a cellular concentration of 11 nmol of arachidonate/10(6) cells, a concentration 10-20% above normal for the parent mouse fibrosarcoma cell line (HSDM1C1) which is not essential fatty acid-deficient. Importantly, the percent of released arachidonate which was converted to PGE2 decreased from 90 to 15% with increasing concentrations of cellular arachidonate, because PGE2 production plateaued at greater than or equal to 6 nmol of arachidonate/10(6) cells, but total arachidonate release continued to rise. Finally, we demonstrated that agonist stimulation with thrombin, A23187, and bradykinin all showed the same percent conversion of released arachidonate to PGE2, implying that the determination of this fraction is not a function of the mechanism of release. These studies with our unique cell line indicate that, when the concentration of arachidonate in the cell is not elevated above amounts normally found in our HSDM1C1 cell line, released arachidonate is rapidly and almost quantitatively converted to PGE2, independent of the agonist used to stimulate the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We present evidence that added thrombin stimulates release of endogenous arachidonic acid by suspensions of human platelets. We also show that added arachidonic acid causes a burst in O2 consumption that mimics one of the well described effects of thrombin on these cells. Further, added aspirin, a known inhibitor of the burst in O2 consumption caused by thrombin, also blunted the stimulatory effect of arachidonate on O2 consumption, and eicosatetraynoate, a known inhibitor of arachidonate oxygenation, blunted the burst in O2 consumption initiated by both thrombin and arachidonate. We conclude that rapid oxygenation of endogenously released arachidonic acid accounts for the thrombin-mediated burst in oxygen consumption by platelets.  相似文献   

19.
Recently several synthetic analogs of 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC; platelet-activating factor) were characterized as selective inhibitors of this agonist's effects on rabbit platelets (Tokumura, A., Homma, H., and Hanahan, D. J. (1985) J. Biol. Chem. 260, 12710-12714). In this current investigation, these studies have been extended to include a further inquiry into the biochemical nature of the metabolic inactivation of AGEPC in rabbit platelets, and the effect of these analogs on this process. Two of the latter components (U66985 and CV3988), which blocked AGEPC biological activity on rabbit platelets, also blocked the metabolism of this agonist. The metabolic conversion of AGEPC to alkyl acyl PC was inhibited nearly sevenfold by the most potent analog, U66985. Those analogs with low (U68043) or no biological inhibitory activity (lysoGEPC) had marginal effects on the metabolism of AGEPC. The effects of these compounds on the metabolism of AGEPC was not simply due to competitive inhibition. In platelets which had been pretreated with AGEPC in absence of extracellular Ca2+ (desensitized) and washed, the metabolic conversion of AGEPC to alkyl acyl PC was actually enhanced. This enhanced metabolic inactivation of AGEPC was also observed upon the treatment of the cells with thrombin, collagen, or ionophore A23187, indicating that the metabolism of AGEPC in platelets was enhanced not only by AGEPC itself but by other agonists as well. Nearly 85% of the fatty acyl residues was arachidonate in the alkyl acyl PC derived from AGEPC. This specific acylation with arachidonate was observed in the presence and absence of the inhibitor and in desensitized cells, indicating that selectivity for arachidonate is not dependent on the enhancement of the metabolism of AGEPC. The alkyl acyl PC found in the cells treated with thrombin, collagen, or A23187 was also predominantly alkyl arachidonoyl PC. Thus it has been shown that the inactivation of AGEPC by its conversion to alkyl acyl PC by rabbit platelets is enhanced by this agonist itself and that excess amounts of AGEPC could be further inactivated by the enhanced capacity of the metabolism process.  相似文献   

20.
The molecular mechanisms of laser-induced changes in the cell structure and function are not well known. The authors examined the effects of low-power laser irradiation on unnucleated pig blood platelets. The obtained results showed that laser irradiation (1–5J) caused in blood platelets lipid peroxidation (measured as thiobarbituric acid reactive substances) and super-oxide anion generation, concomitant with the release of adenine nucleotides and proteins from platelets. The maximum platelet response to laser irradiation was observed when doses of 1.8–2J were used. Our results indicate that red laser irradiation induces: (1) platelet secretory process and the release of substances stored in the specific granules (adenine nucleotides, proteins); and (2) lipid peroxidation partly due to stimulation of endogenous arachidonate and production of its metabolites reacting with thiobarbituric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号