首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complete protocol for the expression of recombinant cytochrome c genes from yeast, Drosophila melanogaster, and rat in a yeast strain, GM-3C-2, which does not express its own cytochromes c is described. The construction of the expression vectors, transformation and large-scale growth of the yeast, and preparation and purification of the recombinant cytochromes c are described. It was found that, contrary to the way yeast modifies its own cytochromes c, the recombinant proteins were partially acetylated at their N-terminus, except for the drosophila protein, which remained entirely unblocked. Furthermore, the yeast and rat proteins were close to fully trimethylated at lysine 72, while the drosophila protein could be separated chromatographically into forms containing tri-, di-, mono-, and unmethylated lysine 72 showing corresponding resonances in the NMR spectrum. These observations emphasize that, in employing expression procedures to obtain native or mutant forms of cytochrome c, it is essential to identify the variety and extent of post-translational modifications and to separate the preparation into pure monomolecular species. Otherwise, it may become impossible to distinguish between the influence of a site-directed mutation and unexamined post-translational modifications.  相似文献   

2.
Cytochrome c released from vertebrate mitochondria engages apoptosis by triggering caspase activation. We previously reported that, whereas cytochromes c from higher eukaryotes can activate caspases in Xenopus egg and mammalian cytosols, iso-1 and iso-2 cytochromes c from the yeast Saccharomyces cerevisiae cannot. Here we examine whether the inactivity of the yeast isoforms is related to a post-translational modification of lysine 72, N-epsilon-trimethylation. This modification was found to abrogate pro-apoptotic activity of metazoan cytochrome c expressed in yeast. However, iso-1 cytochrome c lacking the trimethylation modification also was devoid of pro-apoptotic activity. Thus, both lysine 72 trimethylation and other features of the iso-1 sequence preclude pro-apoptotic activity. Competition studies suggest that the lack of pro-apoptotic activity was associated with a low affinity for Apaf-1. As cytochromes c that lack apoptotic function still support respiration, different mechanisms appear to be involved in the two activities.  相似文献   

3.
Room temperature near-infrared magnetic circular dichroism and low-temperature electron paramagnetic resonance measurements have been used to characterize the ligands of the heme iron in mitochondrial cytochromes c, c1, and b and in cytochrome f of the photosynthetic electron transport chain. The MCD data show that methionine is the sixth ligand of the heme of oxidized yeast cytochrome c1; the identify of this residue is inferred to be the single conserved methionine identified from a partial alignment of the available cytochrome c1 amino acid sequences. A different residue, which is most likely lysine, is the sixth heme ligand in oxidized spinach cytochrome f. The data for oxidized yeast cytochrome b are consistent with bis-histidine coordination of both hemes although the possibility that one of the hemes is ligated by histidine and lysine cannot be rigorously excluded. The neutral and alkaline forms of oxidized yeast cytochrome c have spectroscopic properties very similar to those of the horse heart proteins, and thus, by analogy, the sixth ligands are methionine and lysine, respectively.  相似文献   

4.
Glycosylation is one of the most complex post-translational modifications and may have significant influence on the proper function of the corresponding proteins. Bacteria and yeast are, because of easy handling and cost reasons, the most frequently used systems for recombinant protein expression. Bacteria generally do not glycosylate proteins and yeast might tend to hyperglycosylate. Insect cell- and mammalian cell-based expression systems are able to produce complex N-glycosylation structures but are more complex to handle and more expensive. The nonpathogenic protozoa Leishmania tarentolae is an easy-to-handle alternative expression system for production of proteins requiring the eukaryotic protein folding machinery and post-translational modifications. We used and evaluated the system for the secretory expression of extracellular domains from human glycoprotein VI and the receptor for advanced glycation end products from rat. Both proteins were well expressed and homogeneously glycosylated. Analysis of the glycosylation pattern identified the structure as the conserved core pentasaccharide Man3GlcNac2.  相似文献   

5.
Genes encoding tuna, pigeon, and horse cytochromes c were constructed with synthetic oligodeoxyribonucleotides having preferred codons and portions of the iso-1-cytochrome c-encoding gene from the yeast Saccharomyces cerevisiae. The genes were ligated into an expression vector, which contains the normal 5'- and 3'-untranslated regions of the yeast iso-1-cytochrome c gene, and were integrated in single copy into the chromosome. Yeast strains were also constructed with multiple integrated copies of the pigeon gene. The heterologous and normal mRNA levels of the single-copy strains were equivalent. Although the N-terminal methionines were completely cleaved in the heterospecific proteins, the levels of trimethylation of Lys72 and acetylation of N-terminal glycines ranged from 39-78% and 10-70%, respectively. Horse cytochrome c was produced at a nearly normal level, whereas the pigeon and tuna cytochromes c were produced at approx. 40% of the normal levels. The levels of the cytochromes c and growth of the mutant yeast strains indicated that the heterospecific cytochromes c had approx. 50% specific activity in vivo.  相似文献   

6.
Allen JW 《The FEBS journal》2011,278(22):4198-4216
In c-type cytochromes, heme becomes covalently attached to the polypeptide chain by a reaction between the vinyl groups of the heme and cysteine thiols from the protein. There are two such cytochromes in mitochondria: cytochrome c and cytochrome c(1). The heme attachment is a post-translational modification that is catalysed by different biogenesis proteins in different organisms. Three types of biogenesis system are found or predicted in mitochondria: System I (the cytochrome c maturation system); System III (termed holocytochrome c synthase (HCCS) or heme lyase); and System V. This review focuses primarily on cytochrome c maturation in mitochondria containing HCCS (System III). It describes what is known about the enzymology and substrate specificity of HCCS; the role of HCCS in human disease; import of HCCS into mitochondria; import of apocytochromes c and c(1) into mitochondria and the close relationships with HCCS-dependent heme attachment; and the role of the fungal cytochrome c biogenesis accessory protein Cyc2. System V is also discussed; this is the postulated mitochondrial cytochrome c biogenesis system of trypanosomes and related organisms. No cytochrome c biogenesis proteins have been identified in the genomes of these organisms whose c-type cytochromes also have a unique mode of heme attachment.  相似文献   

7.
1. Despite the same methionine-sulfur:heme-iron:imidazole-nitrogen hemochrome structure observed by x-ray crystallography in four of the seven c-type eukaryotic and prokaryotic cytochromes examined, and the occurrence of the characteristic 695 nm absorption band correlated with the presence of a methionine-sulfur:heme-iron axial ligand in all seven proteins, they fall into two distinct classes on the basis of their EPR and optical spectra. The horse, tuna, and bakers' yeast iso-1 cytochromes c have a predominant neutral pH EPR form with g1=3.06, g2=2.26, and g3=1.25, while the bakers' yeast iso-2 and Euglena cytochromes c, the Rhodospirillum rubrum cytochrome c2, and the Paracoccus denitrificans cytochrome c550 all have a predominant neutral pH EPR form with g1=3.2, g2=2.05, and g3=1.39. The ferricytochromes with g1=3.06 have a B-Q splitting that is approximately 150 cm-1 larger than the ferricytochromes with g1=3.2. 2. Each of the cytochromes displays up to four low spin EPR forms that are in pH-dependent equilibrium and can all be observed at near neutral pH. As the pH is raised the predominant neutral pH form is converted into two forms with g1=3.4 and g1=3.6, identified by comparsion with model compounds and other heme proteins as epsilon-amino:heme-iron:imidazole and bis-epsilon-amino:heme-iron ferrihemochromes, respectively. 3. The pK for the conversion of the predominant neutral pH EPR form into the alkaline pH forms is the same as the pK for the disappearance of the 695 nm absorption band for the cytochromes, even though these pK values range over 2 pH units. This confirms that the g1=3.06 and g1=3.2 forms contain the methionine-sulfur:heme-iron axial ligand while the g1=3.4 and the g1=3.6 forms do not. 4. At extremes of pH, the horse and bakers' yeast iso-1 proteins display several high and low spin forms that are identified, showing that a variety of protein-derived ligands will coordinate to the heme iron including methionine and cysteine sulfur, histidine imidazole, and lysine epsilon-amine. 5. The spectrum of horse cytochrome c with added azide, cyanide, hydroxide, or imidazole as axial ligands has also been examined. 6. From a comparison of the EPR and optical spectral characteristics of these groups of cytochromes with model compounds, it is suggested that the difference between them is due to a change in the hydrogen bonding or perhaps even in the protonation of N-1 of the heme iron-bound histidine imidazole.  相似文献   

8.
Seven cytochromes c, in which individual lysines have been modified to the propylthiobimane derivatives, have been prepared. These derivatives were also converted to the porphyrin cytochromes c by treatment with HF. The properties of both types of modified proteins were studied in their reactions with cytochrome c oxidase. The results show that lysines 25, 27, 60, 72, and 87 do not contribute a full charge to the binding interaction with the oxidase. These five residues, with the exception of the lysine-60 derivative, on the front surface of the protein and contain the solvent-accessible edge of the heme prosthetic group. By contrast, lysines 8 and 13 at the top of the front surface do contribute a full charge to the binding interaction with the oxidase. The removal of the positive charge on any one lysine weakens the binding to cytochrome c oxidase by at least 1 kcal (1 cal = 4.1868 J). The presence of bimane at lysines 13 and 87 clearly forces the separation of the cytochrome c and oxidase, but this does not occur with the other complexes. The bimane-modified lysine-13 protein, and to a lesser extent that modified at lysine 8, show the interesting effect of enhanced complex formation with cytochrome c oxidase when subjected to pressure, possibly because of entrapment of water at the newly created interface of the complex. Our observations indicate that the two proteins of the cytochrome c - cytochrome oxidase complex have preferred, but not obligatory, spatial orientations and that interaction occurs without either protein losing significant portions of its hydration shell.  相似文献   

9.
Cytochrome c is one of the key proteins involved in the programmed cell death, and lysine 72 is known to be required for its apoptogenic activity. We have engineered a number of horse and murine cytochrome c single-point mutants with various substitutions at position 72 and compared quantitatively their proapoptotic activity in living cells. Apoptosis was activated by transferring exogenous cytochrome c into the cytoplasm of cells via a nontraumatic electroporation procedure. All mutant proteins studied exhibited significantly reduced proapoptotic activities in comparison with those for the wild type cytochromes. Relative activity of the horse (h(K72X)) and murine (m(K72W)) mutant proteins diminished in the order: h(K72R) > h(K72G) > h(K72A) > h(K72E) > h(K72L) > h(K72W) > m(K72W). As estimated, the horse and murine K72W mutants were at least 200- and 500-fold less active than corresponding wild type proteins. Thus, the K72W-substituted cytochrome c can serve as an adequate candidate for knock-in studies of cytochrome c-mediated apoptosis. The proapoptotic activity of wild-type cytochrome c from different species in murine monocytic WEHI-3 cells reduced in the order: murine cytochrome c > human cytochrome c approximately horse cytochrome c, thus indicating that apoptotic effect of cytochrome c depends on the species compatibility.  相似文献   

10.
The ability of various native and modified cytochromes c to transfer electrons to cytochrome oxidase is compared in cytochrome c depleted beef heart mitochondrial particles. The kinetics are followed at -49 degrees C after the reaction is initiated by photolysis of the CO compound of cytochrome oxidase in the presence of oxygen. Horse, human, yeast iso-2, and carboxydinitrophenyl (CDNP)-lysine-60 horse cytochromes c all give initial rates of electron transfer that are equal to those observed in whole beef mitochondria. Euglena, CDNP-lysine-72, and CDNP-lysine-13 horse cytochromes c give rates about one-tenth that of whole mitochondria. These rates were independent of the concentration of cytochrome c. Since the inhibited cytochromes c, but not the active proteins, had previously been shown to have lowered affinity for cytochrome oxidase, the results indicate that the structural characteristics important for the association of cytochrome c and oxidase are also essential for achieving normal rates of electron transfer within the complex once formed.  相似文献   

11.
We have isolated from rabbit liver three cDNA clones of 1400-1800 base pairs that hybridize selectively to RNA from animals treated with phenobarbital. The nucleotide sequences of the cDNAs have been determined. In the protein coding region the nucleotide sequences of two of the cDNAs are 88% homologous, and the third cDNA is about 72-74% homologous to the other two. All three are 55-60% homologous to rat liver cytochrome P-450b cDNA. The amino acid sequences derived from the cDNA sequences are about 50% homologous to those of rat liver cytochrome P-450b and rabbit liver cytochrome P-450 (form 2). The degree of homology differs substantially in different regions of the protein. The hydrophobicity profiles of these five mammalian cytochromes P-450 are very similar and contain up to eight regions of hydrophobicity that are long enough to span a membrane. These results indicate that these three cDNAs code for rabbit liver cytochromes P-450 which are different from any rabbit liver cytochrome P-450 for which amino acid sequence information is published. These cDNAs are part of a family of genes that are related to rabbit liver cytochrome P-450 (form 2) and rat liver cytochrome P-450b which are the major phenobarbital-inducible forms. The divergence of amino acid sequence between the rat and rabbit forms and the divergence of nucleotide sequences of silent sites in the two most closely related rabbit forms suggest that cytochromes P-450 have a relatively high rate of amino acid divergence compared to many other vertebrate proteins.  相似文献   

12.
A Shewanella expression system has been used for an overproduction of c-type multiheme proteins. The proteins were exported to the periplasmic space for the maturation. Since the periplasmic expression system is attractive, especially for protease-sensitive proteins, an expression vector containing a signal peptide was constructed for expressions in the periplasmic space of Shewanella oneidensis. To evaluate the system, two eukaryotic proteins which originally do not have signal sequences and are difficult to express in Escherichia coli, were selected. The first is human cytochrome c. Properties of the recombinant cytochrome c were identical to those previously reported, indicating the protein is intact. The other was potato calcium-dependent protein kinase. The protein was expressed in periplasmic space. These results indicated that the system is generally applicable for any protein expression including c-type cytochromes, protease-sensitive proteins and those with multi-disulfide bonds because of transportation to the periplasmic space.  相似文献   

13.
Stable isotope labeling for proteins of interest is an important technique in structural analyses of proteins by NMR spectroscopy. Escherichia coli is one of the most useful protein expression systems for stable isotope labeling because of its high-level protein expression and low costs for isotope-labeling. However, for the expression of proteins with numerous disulfide-bonds and/or post-translational modifications, E. coli systems are not necessarily appropriate. Instead, eukaryotic cells, such as yeast Pichia pastoris, have great potential for successful production of these proteins. The hemiascomycete yeast Kluyveromyces lactis is superior to the methylotrophic yeast P. pastoris in some respects: simple and rapid transformation, good reproducibility of protein expression induction and easy scale-up of culture. In the present study, we established a protein expression system using K. lactis, which enabled the preparation of labeled proteins using glucose and ammonium chloride as a stable isotope source.  相似文献   

14.
The biological activity of a recombinant protein is highly dependent on its biophysical properties including post-translational modifications, solubility, and stability. Production of active recombinant proteins requires careful design of the expression strategy and purification schemes. This is often achieved by proper modification of the target protein during and/or after protein synthesis in the host cells. Such co-translational or post-translational processing of recombinant proteins is typically enabled by co-expressing the required enzymes, folding chaperones, co-factors and/or processing enzymes in the host. Various applications of the co-expression technology in protein production are discussed in this review with representative examples described.  相似文献   

15.
The preparation, purification and characterization of the three singly, three doubly and one triply substituted derivatives of cytochrome c modified by pyridoxal phosphate (PLP) at lysine residues are reported. The PLP positions in PLP derivatives were determined by the amino acid analysis and sequence of PLP peptides. The results identified the lysine at position 86 in one of the singly substituted, lysine 79 in the other singly substituted and lysines 86 and 79 in the third doubly substituted cytochrome c derivatives. The area surrounding phenylalanine 82 forms the predominant PLP binding site on the cytochrome c molecule. The visible, CD and proton NMR spectra, the full intensity of the conformation-sensitive 695 nm band and the oxidation-reduction properties provide evidence to confirm the conclusion that singly and doubly substituted PLP cytochromes c retain the native conformation. The ability to restore both succinate and ascorbate/TMPD oxidation in cytochrome c-depleted mitochondria decreases in the order: native cytochrome c greater than PLP-Lys-79-cytochrome c greater than PLP-Lys-86-cytochrome c greater than PLP-Lys-79,86-cytochrome c greater than triply substituted derivative.  相似文献   

16.
The association and reduction reactions of ten different 4-carboxy-2,6-dinitrophenyl (CDNP) horse heart cytochromes c, singly modified at lysines 8, 13, 27, 39, 60, 72, 73, 86, 87, and 99, with Saccharomyces cerevisiae cytochrome b2 were studied to determine the region of cytochrome c interacting with cytochrome b2. In the presence of higher ratios of free cytochrome c to cytochrome b2, native cytochrome c, and the CDNP-lysine 39, 60, and 99 derivatives associated with cytochrome b2 with a binding stoichiometry close to 2:1, while CDNP-cytochromes c modified at lysines 8, 13, 27, 72, 73, 86, and 87 formed only 1:1 complexes. In the presence of lower ratios of free cytochrome c, modifications of lysines 8, 27, 86, and 87 had more inhibitory effects on the association of cytochrome c with cytochrome b2 than modifications of lysines 13, 39, 60, 72, 73, and 99. This tendency was similar to that on removal of free cytochrome c, except in the case of CDNP-lysine 13 and 73 derivatives. The rate of reduction of cytochrome c by cytochrome b2 was decreased by carboxydinitrophenylation of lysines 8, 13, 27, 72, 73, 86, and 87. In contrast, the rate of reduction of cytochrome c was not affected by modifications of lysines 39, 60, and 99. Since lysines 8, 13, 27, 72, 73, 86, and 87 are located on the front surface and lysines 39, 60, and 99 on the back side, and since different effects of modifying lysine residues located on the front surface may be interpreted in terms of effects on the complementary interaction of cytochrome c and cytochrome b2, these results indicate that the region of cytochrome c interacting with cytochrome b2 is located on the front surface of the cytochrome c molecule containing the exposed heme edge.  相似文献   

17.
The driving force for the modification of existing, or the development of new, protein expression systems lies in the identification of a tremendous number of potential novel drug targets through recent genomics approaches. Saccharomyces cerevisiae as a host for recombinant protein expression, offers many advantages, as its biosynthetic pathways resemble higher eukaryotic cells in many aspects. Two yeast vectors were compared to evaluate the versatility of this organism for expression of recombinant proteins. One expression vector enables the secretion of the recombinant protein into the culture medium through fusion with the leader sequence of the mating-type pheromone alpha; the other directs the expression product into the cytoplasm of the yeast cell through fusion with ubiquitin. To facilitate immunological detection and purification, proteins were expressed as fusions to an octapeptide, the so-called Flag-tag, which is recognised by a monoclonal antibody in the presence of Ca2+. We chose 20 functionally different cDNAs to compare the efficiency of both expression systems. All cDNAs could be expressed at the correct size but at varying yields and purity. Both expression systems differed greatly in the degree of glycosylation and other, not further analysed, post-translational modifications. Secretion of all model proteins into the cell culture supernatant could be accomplished if membrane domains or signal sequences were absent, but many proteins were heavily glycosylated as demonstrated by lectin mapping or enzymatical deglycosylation. Some proteins, however, were expressed as homogenous products, and could be easily purified for further functional studies. Further investigations on the expression biology of yeast are required, in order to optimise the conditions of fermentation which may finally lead to more homogeneous expression products.  相似文献   

18.
The mitochondrial cytochrome c-557 of Crithidia oncopelti contains two lysine residues and an N-terminal proline residue that are methylated in vivo by the methyl group of methionine. The purified cytochrome can act as a methyl acceptor for a methyltransferase activity in the cell extract that uses S-adenosylmethionine as methyl donor. Crithidia cytochrome c-557 is by far the best substrate for this methyltransferase of those tested, in spite of the fact that methylation sites are already almost fully occupied. The radioactive uptake of [14C]methyl groups from S-adenosylmethionine occurred only at a lysine residue (-8) and the N-terminal proline residue. This methyltransferase appears to differ from that of Neurospora and yeast [Durban, Nochumson, Kim, Paik & Chan (1978) J. Biol. Chem. 253, 1427-1435; DiMaria, Polastro, DeLange, Kim & Paik (1979) J. Biol. Chem. 254, 4645-4652] in that lysine-72 of horse cytochrome c is a poor acceptor. Also, the Crithidia methyltransferase appears to be stable to carry lysine methylation much further to completion than do the enzymes from yeast and Neurospora, which produce very low degrees of methylation in native cytochromes c.  相似文献   

19.
Yeast iso-1-cytochrome c is one of the least stable mitochondrial cytochromes c. We have used a coordinated approach, combining the known functional and structural properties of cytochromes c, to engineer mutations into yeast iso-1-cytochrome c with the goal of selectively increasing the stability of the protein. The two redox forms of the native protein and six different mutant forms of yeast iso-1-cytochrome c were analyzed by differential scanning calorimetry (DSC). The relative stability, expressed as the difference in the Gibb's free energy of denaturation at a given temperature between the native and mutant forms (DeltaDeltaG(Tref)), was determined for each of the proteins. In both oxidation states, the mutant proteins C102T, T69E/C102T, T96A/C102T, and T69E/T96A/C102T were more stable than the wild-type protein, respectively. The increased stability of the mutant proteins is proposed to be due to the removal of a rare surface cysteine and the stabilization of two distorted alpha-helices.  相似文献   

20.
Yeast cytochrome b2 gene: isolation with antibody probes   总被引:3,自引:0,他引:3  
B Guiard  J M Buhler 《Biochimie》1984,66(2):151-158
An efficient technique was used to clone the gene for yeast cytochrome b2, (a nuclear encoded mitochondrial protein) using the expression vector, lambda gt11 (lac 5 nin 5 c1857 S100). This enables the insertion of yeast DNA into the beta-galactosidase structural gene (lacZ) and promotes synthesis of hybrid proteins. Screening of antigen producing clones in the lambda gt11 recombinant genomic library was achieved using antiserum against cytochrome b2 according to Young and Davis (1983) Two recombinants containing part of the gene coding for cytochrome b2 were isolated and characterized as follows: by their expression in Escherichia coli cells, examined by immuno-blotting with antibodies to pure cytochrome b2. by DNA sequence analysis. One recombinant carries a 3 Kb yeast DNA insert which contains the whole nucleotide sequence encoding cytochrome b2 and a few amino acids of the amino terminal presequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号