首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During plant development, distantly-located organs must communicate in order to adapt morphological and physiological features in response to environmental inputs. Among the recognized signaling molecules, a class of phytohormones known as the cytokinins functions as both local and long-distance regulatory signals for the coordination of plant development. This cytokinin-dependent communication system consists of orchestrated regulation of the metabolism, translocation, and signal transduction of this phyto...  相似文献   

2.
Root-synthesized cytokinins are transported to the shoot and regulate the growth, development, and stress responses of aerial tissues. Previous studies have demonstrated that Arabidopsis (Arabidopsis thaliana) ATP binding cassette (ABC) transporter G family member 14 (AtABCG14) participates in xylem loading of root-synthesized cytokinins. However, the mechanism by which these root-derived cytokinins are distributed in the shoot remains unclear. Here, we revealed that AtABCG14-mediated phloem unloading through the apoplastic pathway is required for the appropriate shoot distribution of root-synthesized cytokinins in Arabidopsis. Wild-type rootstocks grafted to atabcg14 scions successfully restored trans-zeatin xylem loading. However, only low levels of root-synthesized cytokinins and induced shoot signaling were rescued. Reciprocal grafting and tissue-specific genetic complementation demonstrated that AtABCG14 disruption in the shoot considerably increased the retention of root-synthesized cytokinins in the phloem and substantially impaired their distribution in the leaf apoplast. The translocation of root-synthesized cytokinins from the xylem to the phloem and the subsequent unloading from the phloem is required for the shoot distribution and long-distance shootward transport of root-synthesized cytokinins. This study revealed a mechanism by which the phloem regulates systemic signaling of xylem-mediated transport of root-synthesized cytokinins from the root to the shoot.

Phloem unloading via the apoplastic pathway is essential for shoot distribution and long-distance translocation of root-synthesized cytokinins from the root to the shoot through the xylem.  相似文献   

3.
As the nerve-mediated signaling in animals, long-distance signaling in plants is a prerequisite for plants to be able to perceive environmental stimuli and initiate adaptive responses. While intracellular signal transduction has been attracting considerable attentions, studies on long-distance signaling in plants has been relatively overlooked. Stomatal movements are well recognized as a model system for studies on cellular signal transduction. It has been demonstrated that the stomatal movements may be frequently tuned by long-distance signaling under various environmental stimuli. Stomatal movements can not only respond to persistent stress stimuli but also respond to shock stress stimuli. Stomatal responses to drought stress situations may be best characterized in terms of interwoven networks of chemical signaling pathways playing predominant roles in these adaptive processes. In cases of shock stress stimuli, stomatal movements can be more sensitively regulated through the long-distance signaling but with distinctive patterns not observed for drought or other persistent stresses. Here, the fundamental characteristics of stomatal movements and associated long-distance signaling are reviewed and the implications for plant responses to environmental stresses are discussed.Key words: stomatal movement, long-distance signaling, environmental stresses, abscisic aci, pH signaling, hydraulic signaling, cytokinins, acetylcholine, heat-shock, electric signal  相似文献   

4.
The plasticity of growth and development in response to environmental changes is one of the essential aspects of plant behavior. Cytokinins play an important role as signaling molecules in the long-distance communication between organs in systemic growth regulation in response to nitrogen. The spatial distribution of the expression sites of cytokinin biosynthesis genes leads to structural differences in the molecular species transported through the xylem and phloem, giving root-borne trans-hydroxylated cytokinins, namely trans-zeatin (tZ) type, a specialized efficacy in regulating shoot growth. Furthermore, root-to-shoot translocation via the xylem, tZ, and its precursor, the tZ riboside, controls different sets of shoot growth traits to fine-tune shoot growth in response to nitrogen availability. In addition to nitrogen, photosynthetically generated sugars positively regulate de novo cytokinin biosynthesis in the roots, and contribute to plant growth under elevated CO2 conditions. In shoot-to-root signaling, cytokinins also play a role in the regulation of nutrient acquisition and root system growth in cooperation with other types of signaling molecules, such as C-TERMINALLY ENCODED PEPTIDE DOWNSTREAMs. As cytokinin is a key regulator for the maintenance of shoot apical meristem, deepening our understanding of the regulatory mechanisms of cytokinin biosynthesis and transport in response to nitrogen is important not only for basic comprehension of plant growth, but also to ensure the stability of agricultural production.  相似文献   

5.
Cytokinins are plant growth promoting hormones involved in the specification of embryonic cells, maintenance of meristematic cells, shoot formation and development of vasculature. Cytokinins have also emerged as a major factor in plant-microbe interactions during nodule organogenesis and pathogenesis. Microbe-originated cytokinins confer abnormal hypersensitivity of cytokinins to plants, augmenting the sink activity of infected regions. However, recent findings have shed light on a distinct role of cytokinins in plant immune responses. Plant-borne cytokinins systemically induce resistance against pathogen infection. This resistance is orchestrated by endogenous cytokinin and salicylic acid signaling. Here, we discuss how plant- and pathogen-derived cytokinins inversely affect the plant defense response. In addition, we consider the molecular mechanisms underlying plant-derived cytokinin action in plant immunity.  相似文献   

6.
Cytokinins, a group of mobile phytohormones, play an important role in plant growth and development, and their activity is finely controlled by environmental factors in the control of morphogenic and metabolic adaptations. Inorganic nitrogen sources, such as nitrate, are a major factor regulating gene expression of adenosine phosphate-isopentenyltransferase (IPT), a key enzyme of cytokinin biosynthesis. Modulation of IPT and macronutrient transporter gene expression in response to nitrate, sulphate and phosphate, and cytokinin-dependent repression of the transporter genes suggest that cytokinins play a critical role in balancing acquisition and distribution of macronutrients. Biased distribution of trans-zeatin (tZ)-type cytokinins in xylem and N(6)-(Delta(2)-isopentenyl)adenine (iP)-type cytokinins in phloem saps suggest that, in addition to acting as local signals, cytokinins communicate acropetal and systemic long-distance signals, and that structural side chain variations mediate different biological messages. The compartmentalization of tZ- and iP-type cytokinins implies the involvement of a selective transport system. Recent studies have raised the possibility of subsets of the purine permease family as a transporter of cytokinin nucleobases and equilibrative nucleoside transporters (ENT) for cytokinin nucleosides. These biochemical and transgenic data suggest that AtENT6, an Arabidopsis ENT, could also participate in cytokinin nucleoside transport with a preference for iP riboside in vascular tissue.  相似文献   

7.
It is becoming increasingly apparent that the long-distance signalling associated with many developmental processes is complex and that novel hormone-like signals may play substantial roles. The past decades have seen several substances (e.g. brassinosteroids, systemin and other polypeptides, mevalonic and jasmonic acids, polyamines, oligosaccharides, flavonoids, and quinones) vie for a place among the classical plant hormones (e.g. Spaink, 1996). Recent microinjection and grafting studies have also shown that RNA may act as a long-distance signal (Jorgensen et al ., 1998; Xoconostle-Cázares et al ., 1999). In this issue, Hannah et al . describe long-distance signalling and the regulation of root–shoot partitioning in dwarf lethal or dosage-dependent lethal ( DL ) mutants of common bean (Shii et al ., 1980, 1981), and present evidence indicating that substances in addition to classical plant hormones (e.g. cytokinins) may be involved.
As in the report by Hannah et al ., much of the evidence for roles of unidentified long-distance signals in the control of plant development is indirect. The possibility that a small number of long-distance signals might control a multitude of developmental processes arises through the potential for differences in tissue sensitivity, fluctuations in hormone levels and differences in the nature of responses of different tissues to the same hormone. Consequently, particular hormones may influence numerous processes seemingly simultaneously, yet independently. Even so, long-distance signalling is involved in processes as diverse as root–shoot balance, senescence, branching, flowering, nodulation, stress responses and nutrient uptake. Through comparison of even a few different developmental processes, progress can be made to reveal the true complexity of plant development. Using this approach it is also clear that many unknown signals may be involved.  相似文献   

8.
Cytokinins control key processes during plant growth and development, and cytokinin receptors CYTOKININ RESPONSE 1/WOODEN LEG/ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/WOL/AHK4), AHK2, and AHK3 have been shown to play a crucial role in this control. The involvement of cytokinins in signaling the status of several nutrients, such as sugar, nitrogen, sulfur, and phosphate (Pi), has also been highlighted, although the full physiological relevance of this role remains unclear. To gain further insights into this aspect of cytokinin action, we characterized a mutant with reduced sensitivity to cytokinin repression of a Pi starvation-responsive reporter gene and show it corresponds to AHK3. As expected, ahk3 displayed reduced responsiveness to cytokinin in callus proliferation and plant growth assays. In addition, ahk3 showed reduced cytokinin repression of several Pi starvation-responsive genes and increased sucrose sensitivity. These effects of the ahk3 mutation were especially evident in combination with the cre1 mutation, indicating partial functional redundancy between these receptors. We examined the effect of these mutations on Pi-starvation responses and found that the double mutant is not significantly affected in long-distance systemic repression of these responses. Remarkably, we found that expression of many Pi-responsive genes is stimulated by sucrose in shoots and to a lesser extent in roots, and the sugar effect in shoots of Pi-starved plants was particularly enhanced in the cre1 ahk3 double mutant. Altogether, these results indicate the existence of multidirectional cross regulation between cytokinin, sugar, and Pi-starvation signaling, thus underlining the role of cytokinin signaling in nutrient sensing and the relative importance of Pi-starvation signaling in the control of plant metabolism and development.  相似文献   

9.
Recent breakthroughs in cytokinin research have shed new light on the role of cytokinin in plant development. Loss-of-function mutants of a cytokinin receptor reveal a role for the hormone in establishment of the vasculature during embryonic development. Cytokinin controls the number of early cell divisions via a two-component signaling system. Genetically engineered plants that have a reduced cytokinin content demonstrate the regulatory role of the hormone in control of meristem activity and organ growth during postembryonic development, with opposite roles in roots and shoots. There is increasing evidence from work with transgenic plants and mutant analysis that cytokinins do not perform the previously proposed function as a root-derived signal for the regulation of shoot branching. Root-borne cytokinins might serve as a long-range signal controling other processes at distant sites, such as responding to nutritional status, particularly nitrogen availability.  相似文献   

10.
Cytokinins are phytohormones that participate in regulation of all aspects of plant growth and development, including response to biotic agents. Fungi of different taxonomic and trophic groups synthesize cytokinins, employing them for interaction with plants, both friendly and hostile. They also appear to be able to manipulate the host plant genes of cytokinin biosynthesis and metabolism to their own benefit. In this review, we analyzed the data about changes in the level and composition of cytokinin pool under fungi influence, the effect of exogenous hormones on the growth of fungi in culture and in situ, changes in the physiology and metabolism of fungi due to genetic transformations related to cytokinins. The possible role of cytokinins in the regulation of macromycete development is discussed as well. The pattern of cytokinin dynamics allow us to consider the hormones of this class as potential regulators of fungi growth. Further explore of fungal cytokinins is essential to improve biotechnology using fungi as raw materials for medicine and agricultural production.  相似文献   

11.
Cytokinins from the roots may be involved in regulating rose ( Rosa hybrida ) shoot growth and development. The objective of this study was to estimate the export of cytokinins from the roots and their degradation rate in the shoot, which were expected to be correlated with plant development. Hence, the total cytokinin content of the shoot, the concentration of zeatin riboside (ZR) in bleeding sap, and the transpiration rates in three stages of development were determined. The estimations performed are based on the assumption that the cytokinin concentration in bleeding sap is representative for the cytokinin concentration in xylem sap in situ. This was verified by comparing the ZR concentration in bleeding sap and in sap obtaíned after pressurizing the root system to a level equivalent to the leaf water potential; no significant differences could be found. The import of cytokinins could not be correlated with plant development, as it increased linearly with time. The estimated relative degradation rate of cytokinins in the shoot decreased as the plants matured. The half-life of cytokinins in the shoot was found to be approximately 1 day, indicating that cytokinins are rapidly metabolized in the shoot.  相似文献   

12.
Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.  相似文献   

13.
Auxin-signaling: short and long   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
The synthesis, transport and metabolism of endogenous cytokinins   总被引:7,自引:0,他引:7  
Abstract Present evidence indicates that only the root systems of plants have been shown conclusively to synthesize cytokinins. Although most of these compounds are apparently exported to the shoot via the xylem, there are indications that more attention should be given to the possibility of translocation through the phloem. Within mature leaves the cytokinins derived from the roots are converted to inactive or storage forms by means of glucosylation. While it would appear that glucosylation could occur in all living plant cells whenever the cytokinins are no longer required for active growth, and could provide the plant with a potential reservoir of cytokinins, very little is known with regard to the transport and reutilisation of these compounds.  相似文献   

16.
Plant growth and development is influenced by mutual interactions among plant hormones. The five classical plant hormones are auxins, cytokinins, gibberellins, abscisic acid and ethylene. They are small diffusible molecules that easily penetrate between cells. In addition, newer classes of plant hormones have been identified such as brassinosteroids, jasmonic acid, salicylic acid and various small proteins or peptides. These hormones also play important roles in the regulation of plant growth and development. This review begins with a brief summary of the current findings on plant hormones. Based on this knowledge, a conceptual model about interactions among plant hormones is built so as to link and develop an understanding of the diverse functions of different plant hormones as a whole in plants.Key words: abscisic acid, auxin, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonic acid, salicylic acid, plant peptide hormones  相似文献   

17.
Cytokinin plays a critical role in plant growth and development by stimulating cell division and cell differentiation. Despite many years' research efforts, our current understanding of this hormone is still limited regarding both its biosynthesis and signaling. To genetically dissect the cytokinin pathway, we have used a functional screen to identify Arabidopsis gain-of-function mutations that enable shoot formation in the absence of exogenous cytokinins. By using a chemical-inducible activation tagging system, we have identified over 40 putative mutants, designated as pga (plant growth activators), which presumably were affected in key components of cytokinin biosynthesis and signaling pathway. Here, we report a detailed characterization of pga22, a representative mutant from this collection. A gain-of-function mutation in the PGA22 locus resulted in typical cytokinin responses. Molecular and genetic analyses indicated that PGA22 encodes an isopentenyl transferase (IPT) previously identified as AtIPT8. Plants of the pga22 mutant accumulated at remarkably higher levels of isopentenyladenosine-5'-monophosphate and isopentenyladenosine when analyzed by mass spectrometry, suggesting that AtIPT8/PGA22 is a functional IPT that may direct the biosynthesis of cytokinins in planta via an isopentenyladenosine-5'-monophosphate-dependent pathway.  相似文献   

18.
The cytokinin class of plant hormones plays key roles in regulating diverse developmental and physiological processes. Arabidopsis perceives cytokinins with three related and partially redundant receptor histidine kinases (HKs): CRE1 (the same protein as WOL and AHK4), AHK2, and AHK3 (CRE-family receptors). It is suggested that binding of cytokinins induces autophosphorylation of these HKs and subsequent transfer of the phosphoryl group to a histidine phosphotransfer protein (HPt) and then to a response regulator (RR), ultimately regulating downstream signaling events. Here we demonstrate that, in vitro and in a yeast system, CRE1 is not only a kinase that phosphorylates HPts in the presence of cytokinin but is also a phosphatase that dephosphorylates HPts in the absence of cytokinin. To explore the roles of these activities in planta, we replaced CRE1 with mutant versions of the gene or with AHK2. Replacing CRE1 with CRE1(T278I), which lacks cytokinin binding activity and is locked in the phosphatase form, decreased cytokinin sensitivity. Conversely, replacing CRE1 with AHK2, which favors kinase activity, increased cytokinin sensitivity. These results indicate that in the presence of cytokinins, cytokinin receptors feed phosphate to phosphorelay-integrating HPt proteins. In the absence of cytokinins, CRE1 removes phosphate from HPt proteins, decreasing the system phosphoload.  相似文献   

19.
A physiological overview of the genetics of flowering time control   总被引:14,自引:1,他引:13  
Physiological studies on flowering time control have shown that plants integrate several environmental signals. Predictable factors, such as day length and vernalization, are regarded as 'primary', but clearly interfere with, or can even be substituted by, less predictable factors. All plant parts participate in the sensing of these interacting factors. In the case of floral induction by photoperiod, long-distance signalling is known to occur between the leaves and the shoot apical meristem (SAM) via the phloem. In the long-day plant, Sinapis alba, this long-distance signalling has also been shown to involve the root system and to include sucrose, nitrate, glutamine and cytokinins, but not gibberellins. In Arabidopsis thaliana, a number of genetic pathways controlling flowering time have been identified. Models now extend beyond 'primary' controlling factors and show an ever-increasing number of cross-talks between pathways triggered or influenced by various environmental factors and hormones (mainly gibberellins). Most of the genes involved are preferentially expressed in meristems (the SAM and the root tip), but, surprisingly, only a few are expressed preferentially or exclusively in leaves. However, long-distance signalling from leaves to SAM has been shown to occur in Arabidopsis during the induction of flowering by long days. In this review, we propose a model integrating physiological data and genes activated by the photoperiodic pathway controlling flowering time in early-flowering accessions of Arabidopsis. This model involves metabolites, hormones and gene products interacting as long- or short-distance signalling molecules.  相似文献   

20.
Role of cytokinins in stress resistance of plants   总被引:1,自引:0,他引:1  
The facts of both positive and negative influences of cytokinins on stress resistance of plants are known today. Without pretending to a final choice between these points of view, we have made an attempt to analyze the details of the experiments that gave rise to conclusions about the nature of the effect of cytokinins on the resistance to stress-causing influences with a focus on their intensity and duration. The review deals with the data concerning the influence of different adverse factors on the content of endogenous cytokinins and transduction of cytokinin signals, examines the influence on plant resistance of treatment with exogenous hormone, and the effects of genetic modifications causing changes in cytokinin content and signaling. Resistance is considered not only as a mean of plant survival under severe stress but also as an instrument of maintaining growth rate in plants exposed to moderate stress. Literature data and our own results make it possible to conclude that cytokinins play an important role in formation of plant resistance to adverse influences; however, the effect of these hormones depends on stress intensity. Under moderate stress, cytokinins ensure maintenance of plant growth, whereas a drop in cytokinins hampers growth under a strong influence of adverse factors, which is a prerequisite for mobilization of limited resources characteristic of severe stress and ensures preservation of plant viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号