首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Drosophila, the maternally expressed mei-41 and grp genes are required for successful execution of the nuclear division cycles of early embryogenesis. In fission yeast, genes encoding similar kinases (rad3 and chk1, respectively) are components of a cell cycle checkpoint that delays mitosis by inhibitory phosphorylation of Cdk1. We have identified mutations in a gene encoding a Cdk1 inhibitory kinase, Drosophila wee1 (Dwee1). Like mei-41 and grp, Dwee1 is zygotically dispensable but is required maternally for completing the embryonic nuclear cycles. The arrest phenotype of Dwee1 mutants, as well as genetic interactions between Dwee1, grp, and mei-41 mutations, suggest that Dwee1 is functioning in the same regulatory pathway as these genes. These findings imply that inhibitory phosphorylation of Cdk1 by Dwee1 is required for proper regulation of the early syncytial cycles of embryogenesis.  相似文献   

3.
4.
In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chk1, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.  相似文献   

5.
During early embryogenesis of Drosophila melanogaster, mutations in the DNA-replication checkpoint lead to chromosome-segregation failures. Here we show that these segregation failures are associated with the assembly of an anastral microtubule spindle, a mitosis-specific loss of centrosome function, and dissociation of several components of the gamma-tubulin ring complex from a core centrosomal structure. The DNA-replication inhibitor aphidicolin and DNA-damaging agents trigger identical mitotic defects in wild-type embryos, indicating that centrosome inactivation is a checkpoint-independent and mitosis-specific response to damaged or incompletely replicated DNA. We propose that centrosome inactivation is part of a damage-control system that blocks chromosome segregation when replication/damage checkpoint control fails.  相似文献   

6.
Cell cycle checkpoints that are engaged in response to damaged and unreplicated DNA may serve additional, constitutive functions. In the developing Xenopus laevis embryo, the checkpoint kinase Chk1 is transiently activated at the midblastula transition (MBT), a period of extensive cell cycle remodeling including the acquisition of cell cycle checkpoints. The timing of many cell cycle remodeling events at the MBT, such as the lengthening of cell cycles, depends upon a critical nucleocytoplasmic (N/C) ratio. However, other events, including the degradation of maternal cyclin E, do not depend upon the N/C ratio, and are regulated by an autonomous developmental timer. To better understand what regulates Chk1 activation at the MBT, embryos were treated with aphidicolin, at different developmental times and for different lengths of time, to reduce the DNA content at the MBT. Chk1 was activated at the MBT in these embryos establishing that Chk1 activation occurs independently of the N/C ratio. Cdc25A is normally phosphorylated by Chk1 at the MBT and then degraded. The degradation of Cdc25A demonstrated partial dependence on DNA content, suggesting that factors other than Chk1 regulate its degradation. When the cyclin E developmental timer was disrupted with the Cdk2 inhibitor Δ34-Xic1, Chk1 was still activated at the MBT, indicating that activation of Chk1 at the MBT was not directly linked to the cyclin E timer. Conversely, unreplicated or damaged DNA, delayed the degradation of cyclin E at the MBT, indicating that the cyclin E/Cdk2 timer is sensitive to engagement of cell cycle checkpoints.  相似文献   

7.
8.
9.
Barbosa V  Kimm N  Lehmann R 《Genetics》2007,176(4):1967-1977
Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been linked to decreased levels of the TGFalpha-like molecule Gurken, which controls normal eggshell patterning. We used this easy-to-score eggshell phenotype in a germ-line mosaic screen in Drosophila to identify new genes affecting meiotic progression, DNA condensation, and Gurken signaling. One hundred eighteen new ventralizing mutants on the second chromosome fell into 17 complementation groups. Here we describe the analysis of 8 complementation groups, including Kinesin heavy chain, the SR protein kinase cuaba, the cohesin-related gene dPds5/cohiba, and the Tudor-domain gene montecristo. Our findings challenge the hypothesis that checkpoint activation upon persistent DSBs is exclusively mediated by ATR/Mei-41 kinase and instead reveal a more complex network of interactions that link DSB formation, checkpoint activation, meiotic delay, DNA condensation, and Gurken protein synthesis.  相似文献   

10.
11.
12.
In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box-mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]-GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM-GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM-GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.  相似文献   

13.
Identification of physiological substrates for Cdc2/cyclin B is crucial for understanding the functional link between mitotic events and Cdc2/cyclin B activation. A human homologue of the Drosophila warts tumor suppressor, termed WARTS, is a serine/threonine kinase and a dynamic component of the mitotic apparatus. We have found that Cdc2/cyclin B forms a complex with a fraction of WARTS in the centrosome and phosphorylates the Ser613 site of WARTS during mitosis. Immunocytochemical analysis has shown that the S613-phosphorylated WARTS appears in the spindle poles at prometaphase and disappears at telophase. Our findings suggest that Cdc/cyclin B regulates functions of WARTS on the mitotic apparatus.  相似文献   

14.
Cdc2 kinase activity is required for triggering entry into mitosis in all known eukaryotes. Elaborate mechanisms have evolved for regulating Cdc2 activity so that mitosis occurs in a timely manner, when preparations for its execution are complete. In Schizosaccharomyces pombe, Wee1 and a related Mik1 kinase are Cdc2-inhibitory kinases that are required for preventing premature activation of the mitotic program. To identify Cdc2-inhibitory kinases in Drosophila, we screened for cDNA clones that rescue S. pombe wee1- mik1- mutants from lethal mitotic catastrophe. One of the genes identified in this screen, Drosophila wee1 (Dwee1), encodes a new Wee1 homologue. Dwee1 kinase is closely related to human and Xenopus Wee1 homologues, and can inhibit Cdc2 activity by phosphorylating a critical tyrosine residue. Dwee1 mRNA is maternally provided to embryos, and is zygotically expressed during the postblastoderm divisions of embryogenesis. Expression remains high in the proliferating cells of the central nervous system well after cells in the rest of the embryo have ceased dividing. The loss of zygotically expressed Dwee1 does not lead to mitotic catastrophe during postblastoderm cycles 14 to 16. This result may indicate that maternally provided Dwee1 is sufficient for regulating Cdc2 during embryogenesis, or it may reflect the presence of a redundant Cdc2 inhibitory kinase, as in fission yeast.  相似文献   

15.
16.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

17.
The nuclear division cycles of early Drosophila embryogenesis have a number of unique features that distinguish them from later cell cycles. These features include the lack of some checkpoints that operate in later cell cycles, the absence of gap phases, and very rapid DNA synthesis phases. The molecular mechanisms that control these rapid nuclear division cycles are poorly understood. Here we describe analysis of cyclin J, a previously uncharacterized cyclin which has an RNA expression pattern that suggests a possible role in early embryogenesis. We show that the cyclin J protein is present in early embryos where it forms active kinase complexes with cyclin-dependent kinase (Cdk) 2. To determine whether cyclin J plays a role in controlling the early nuclear cycles we isolated peptide aptamers that specifically bind to cyclin J and inhibit its ability to activate Cdks. We injected the inhibitory aptamers into syncytial Drosophila embryos and demonstrated that they caused defects in chromosome segregation and progression through mitosis. We obtained similar results by injecting cyclin J antibodies into embryos. Our results suggest that a cyclin J-associated kinase activity is required for the early embryonic division cycles.  相似文献   

18.
S-phase and DNA damage checkpoint controls block the onset of mitosis when DNA is damaged or DNA replication is incomplete. It has been proposed that damaged or incompletely replicated DNA generates structures that are sensed by the checkpoint control pathway, although little is known about the structures and mechanisms involved. Here, we show that the DNA replication initiation proteins Orp1p and Cdc18p are required to induce and maintain the S-phase checkpoint in Schizosaccharomyces pombe. The presence of DNA replication structures correlates with activation of the Cds1p checkpoint protein kinase and the S-phase checkpoint pathway. By contrast, induction of the DNA damage pathway is not dependent on Orp1p or Cdc18p. We propose that the presence of unresolved replication forks, together with Orp1p and Cdc18p, are necessary to activate the Cds1p-dependent S-phase checkpoint.  相似文献   

19.
The ATR family of checkpoint kinases is essential for an appropriate response to genomic insults in eukaryotes. Included in this family are Mei-41 in Drosophila, Mec1 in S. cerevisiae, Rad3 in S. pombe, and ATR in vertebrates. These large kinases phosphorylate and modify multiple cell cycle and checkpoint factors, leading to cell cycle arrest, DNA repair, and induction of apoptosis. The catalytic domain of all ATR family members comprises only a fraction of the total protein. Here, we show that the non-catalytic portion of ATR has a conserved function in the checkpoint response. Expression of either wild type or various kinase defective forms of Xenopus ATR (XATR) in S. cerevisiae mec1 mutants suppresses the checkpoint defect and induces a DNA damage dependent mitotic cell cycle arrest. This suppression requires the presence of yeast Ddc2 and Rad9 but functions independently of Rad9 modification and Rad53 activation. Our results indicate that XATR is not functioning through the established mitotic checkpoint pathways. Instead, we find that the XATR suppression of the mec1 mutant checkpoint defect requires the spindle checkpoint factors Mad1 and Mad2, suggesting a role for XATR in the spindle assembly checkpoint. Finally, we show that a yeast strain expressing a truncated, kinase domain deleted form of mec1 from the endogenous locus is partially checkpoint proficient and induces a mitotic cell cycle arrest in a Mad2 dependent manner. Thus, the link between the non-catalytic region of the ATR kinase family and the spindle checkpoint pathway is conserved.  相似文献   

20.
In order to prevent division of damaged chromosomes, cells activate a checkpoint to inhibit mitotic progression in order to repair the damaged DNA. Upon detection of DNA damage two downstream checkpoint kinases, Chk1 and Rad53, are activated by the sensor kinase, Mec1, to block the metaphase to anaphase transition and mitotic exit, respectively. Recent data from studies with budding yeast suggested that the DNA damage checkpoint also enlists the cAMP dependent protein kinase (PKA) pathway, which is an integral part of the nutrient sensing mechanism in budding yeast, to inhibit mitosis in response to DNA damage. Genetic and biochemical evidence suggested that the PKA pathway contributes to the inhibition of mitotic progression by mediating the phosphorylation of the APC specificity factor Cdc20. Phosphorylation of Cdc20 assists the activity of the checkpoint pathways in the inhibition of the degradation of mitotic inhibitors securin, Pds1, and the B type cyclin, Clb2, in order to block anaphase and mitotic exit. Cdc20 was phosphorylated following DNA damage in a PKA and Mec1 dependent manner, suggesting PKA activation is dependent on Mec1. Here we discuss possible mechanisms for how PKA activity could be regulated in response to DNA damage and we will also address the implication of these results in evaluating current cancer treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号