首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The time course of oxyhemoglobin oxidation by nitrite consisted of a kinetic lag followed by a transition phase which progressed into a rapid autocatalytic phase. The imidazolthione and imidazolone derivatives, ergothioneine and uric acid, respectively, caused an increase in the duration of the lag phase in a concentration-dependent manner, without affecting the onset and rate of the autocatalytic phase. Neither compound reacted with H2O2 or nitrite, oxidizing species required in the initiation steps of oxyhemoglobin oxidation. On the other hand, both compounds reduced effectively and at comparable rates the high oxidation state of hemoglobin, i.e., ferrylhemoglobin, which is an intermediate species occurring in the autocatalytic phase. In addition, the rate of ergothioneine oxidation, upon its reaction with ferrylmyoglobin, was accelerated by nitrite, thus suggesting a reaction between the thione and nitrogen dioxide. Nitrogen oxide and ferrylhemoglobin are key species in the free radical chain propagation leading to oxyhemoglobin oxidation by nitrite. These data support the view that ergothioneine and urate delay oxyhemoglobin oxidation by nitrite upon the temporary removal of the propagating species, i.e., nitrogen dioxide and, secondarily, ferrylhemoglobin, and within a mechanism encompassing alterations of the nitrite in equilibrium with nitrogen dioxide and ferrylhemoglobin in equilibrium with methemoglobin redox transitions.  相似文献   

2.
The ability of thiols, 2-imidazolethiones and uric acid to protect bovine oxyhemoglobin from copper(II)-induced oxidation to methemoglobin was investigated. The oxidation of oxyhemoglobin by Cu(II) proceeded in two phases: (1) an initial rapid reaction (less than 30 s) followed by (2) a slower reaction that carried it to completion. Thiols, including N-acetyl-L-cysteine, DL-dithiothreitol, reduced glutathione, DL-homocysteine, 2-mercaptoethanol and 2- and 3-mercaptopropionic acid, whose sulfhydryl groups were slowly oxidized by Cu(II) (with the exception of 2-mercaptopropionic acid), protected oxyhemoglobin in both phases of the reaction. Other thiols, including L-cysteine, cysteamine, and D-penicillamine, whose sulfhydryl groups were readily oxidized by Cu(II), protected hemoglobin initially, but within 2-4 min, the rate of methemoglobin formation was the same as Cu(II)-treated oxyhemoglobin. 2-Mercaptoimidazole and 1-methyl-2-mercaptoimidazole, which complex Cu(II) and inhibit Cu(II)-catalyzed oxidation of ascorbic acid, also protected hemoglobin in the initial phase, but not in the second phase. Uric acid, L-ergothioneine, and thiourea did not protect oxyhemoglobin in either the fast or slow phase. Cu(II) may have a coordination site involved in the oxidation of hemoglobin that is not blocked by the 2-imidazolethiones, uric acid, or the oxidized thiols. It is concluded that certain thiols that complex Cu(II) and are not rapidly oxidized will protect oxyhemoglobin from Cu(II)-induced oxidation, but the thiols are no longer effective once they are oxidized.  相似文献   

3.
During the reaction of oxyhemoglobin (HbO2) with nitrite, the concentration of residual nitrite, nitrate, oxygen, and methemoglobin (Hb+) was determined successively. The results obtained at various pH values indicate the following stoichiometry for the overall reaction: 4HbO2 + 4NO2- 4H+ leads to 4Hb+ + 4NO3- + O2 + 2H2 O (Hb denotes hemoglobin monomer). NO2- binds with methemoglobin noncooperatively with a binding constant of 340 M-1 at pH 7.4 and 25 degrees C. Thus, the major part of Hb+ produced is aquomethemoglobin, not methemoglobin nitrite, when less than 2 equivalents of nitrite is used for the oxidation.  相似文献   

4.
Oxidation of oxyhemoglobin by nitrite is characterized by the presence of a lag phase followed by the autocatalysis. Just before the autocatalysis begins, an asymmetric ESR signal is detected which is similar to that of the methemoglobin radical generated from methemoglobin and H2O2 in shape, g value (2.005), peak-to-peak width (18 G) and other properties, except the difference in the dependence on temperature. Generation of H2O2 is indicated by the prolongation of the lag phase by the addition of catalase. On the other hand, the oxidation is modified by neither superoxide dismutase nor Nitroblue tetrazolium. The oxidation is prolonged in the presence of KCN. The present results indicate a free-radical mechanism for the oxidation in which the asymmetric radical catalyzes the formation of NO2 from NO2- by a peroxidase action and NO2 oxidizes oxyhemoglobin in the autocatalytic phase.  相似文献   

5.
《Free radical research》2013,47(6):321-328
The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.  相似文献   

6.
Autocatalytic Oxidation of Hemoglobin by Nitrite: A Possible Mechanism   总被引:2,自引:0,他引:2  
Oxidation of oxyhemoglobin by nitrite ions to produce methemoglobin is one of the more employed procedures to oxidize the hemoprotein. The process takes place readily after a clear induction time. This behaviour is usually explained in terms of an autocatalytic reaction mechanism. However, the generally accepted mechanism is not autocatalytic and cannot explain the main features of the process. In the present work it is proposed that the characteristics of the process require the occurrence of a fast reaction between oxyhemoglobin and nitrogen dioxide. This process acts as a branching step, leading to the observed autocatalysis.  相似文献   

7.
gamma-Irradiation has been defined to increase in the rats blood the methemoglobin level providing for shortening the initiation phase and accelerates the autocatalytic phase initiation, reduces the period of half transforming hemoglobin into methemoglobin and increases the velocity of its oxidation. Alongside with the latter there is observed a violation of methemoglobin concentration growth dependence on the animals irradiation dose (in the range of 0.16-0.50 Gr). The hemoglobin oxygenation reaction kinetics with the initial level of hemoglobin unexceeding 3% has been determined as having a biexponential character. The reaction kinetics parameters don't depend on ionizing radiation and number of sodium nitrite oxidized subunits formed in the process of reaction in the case if their composition unexceeds 50% of the total level.  相似文献   

8.
Human oxyhemoglobin is converted to methemoglobin by a wide array of organic and inorganic reductants. Depending upon the concentration and nature of the reductant, varying amounts of deoxyhemoglobin are produced. The general overall sequence is: FeO2 leads to (1) FeIII leads to (2) FeII. The intermediacy of methemoglobin can be demonstrated by direct spectral observation and by cyanide trapping. For organic reductants, the second-order rate constants for (1) vary from greater than 300 (phenylhydroxylamine) to 1.4 X 10(-4) M-1 s-1 (malononitrile). Generally the rates parallel the ease of hydrogen abstraction by iron-bound oxygen from the substrate, and simply hydrocarbons are reactive. Rates for these processes have been ascertained with recrystallized protein, lysed cells, and intact human erythrocytes. At room temperature oxyhemoglobin quantitatively converts benzaldehyde to benzoic acid and hydroquinone to benzoquinone. Rates for inorganic species (process 1) range from greater than 7 X 10(3) (chromous ion) to 0.015 M-1 s-1 (ferrocyanide). Ferrous ion rapidly deoxygenates oxyhemoglobin by direct attack on the oxy complex but methemoglobin is not an intermediate with this reagent. Taken together the results support the theoretical prediction that reductants should oxidize oxyhemoglobin, and they demonstrate at least some degree of radical character to the oxy complex.  相似文献   

9.
Mechanism of oxyhemoglobin oxidation induced by hydrogen peroxide]   总被引:1,自引:0,他引:1  
The process of oxyhemoglobin oxidation initiated by hydrogen peroxide in low (10(-7) M) concentrations was investigated. It was found, that H2O2 in this concentration is able to induce the process of chain oxidation of oxyhemoglobin to methemoglobin. The following observations indicate that the process is essentially the chain reaction: 1) The amount of the methemoglobin in haem groups, produced in the reaction, exceed by 20 times the quantity of hydrogen, added initially, to induce the oxidation. 2) Catalase stopped this process at any stage of the reaction. This fact implies that the chain process involves generation of new molecules of H2O2 in the course of oxidation of oxyhemoglobin. The chain reaction proceeded only in the presence of oxygen. But if oxygen was introduced into hemoglobin solution, preincubated with H2O2 in vacuum, than again the oxidation of hemoglobin developed. Apparently, H2O2 in low concentrations appears, mainly, as an inductor of the oxyhemoglobin autooxidation.  相似文献   

10.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5-diethoxyphosphoryl-5-methyl-pyrroline-N-oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

11.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5‐diethoxyphosphoryl‐5‐methyl‐pyrroline‐N‐oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

12.
Oxidation of oxyhemoglobin by nitrite is characterized by a lag period followed by an autocatalytic phase. The oxidation can be inhibited by the addition of morpholine, piperidine, triethanolamine or triethylamine (6 mM each). These amines are known to react with nitrogen dioxide to yield nitrosamine. Unexpectedly, aniline or aminopyrine (120 microM each) markedly inhibited the oxidation. These compounds, but not the other amines given above, inhibited the peroxide compound formation from methemoglobin and hydrogen peroxide. The results establish that, during the oxidation, the peroxide compound is generated and converts nitrite into nitrogen dioxide by its peroxidatic activity, resulting in an autocatalytic phase.  相似文献   

13.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

14.
Uric acid has been considered to be an efficient scavenger of peroxynitrite but the reaction between urate and peroxynitrite has been only partially characterized. Also, previous studies have indicated that urate may increase peroxynitrite-mediated oxidation of low density lipoprotein (LDL). Here, we examined the reaction between urate and peroxynitrite by combining kinetic, oxygen consumption, spin trapping, and product identification studies; in parallel, we tested the effect of urate upon peroxynitrite-mediated lipid oxidation. Our results demonstrated that urate reacts with peroxynitrite with an apparent second order rate constant of 4.8 x 10(2) M(-1). s(-1) in a complex process, which is accompanied by oxygen consumption and formation of allantoin, alloxan, and urate-derived radicals. The main radical was identified as the aminocarbonyl radical by the electrospray mass spectra of its 5, 5-dimethyl-l-pyrroline N-oxide adduct. Mechanistic studies suggested that urate reacts with peroxynitrous acid and with the radicals generated from its decomposition to form products that can further react with peroxynitrite anion. These many reactions may explain the reported efficiency of urate in inhibiting some peroxynitrite-mediated processes. Production of the aminocarbonyl radical, however, may propagate oxidative reactions. We demonstrated that this radical is likely to be the species responsible for the effects of urate in amplifying peroxynitrite-mediated oxidation of liposomes and LDL, which was monitored by the formation of lipid peroxides and thiobarbituric acid-reactive substances. The aminocarbonyl radical was not detectable during urate attack by other oxidants and consequently it is unlikely to be responsible for all previously described prooxidant effects of uric acid.  相似文献   

15.
Peroxynitrite, a strong oxidant formed intravascularly in vivo, can diffuse onto erythrocytes and be largely consumed via a fast reaction (2 x 10(4) m(-1) s(-1)) with oxyhemoglobin. The reaction mechanism of peroxynitrite with oxyhemoglobin that results in the formation of methemoglobin remains to be elucidated. In this work, we studied the reaction under biologically relevant conditions using millimolar oxyhemoglobin concentrations and a stoichiometric excess of oxyhemoglobin over peroxynitrite. The results support a reaction mechanism that involves the net one-electron oxidation of the ferrous heme, isomerization of peroxynitrite to nitrate, and production of superoxide radical and hydrogen peroxide. Homolytic cleavage of peroxynitrite within the heme iron allows the formation of ferrylhemoglobin in approximately 10% yields, which can decay to methemoglobin at the expense of reducing equivalents of the globin moiety. Indeed, spin-trapping studies using 2-methyl-2-nitroso propane and 5,5 dimethyl-1-pyrroline-N-oxide (DMPO) demonstrated the formation of tyrosyl- and cysteinyl-derived radicals. DMPO also inhibited covalently linked dimerization products and led to the formation of DMPO-hemoglobin adducts. Hemoglobin nitration was not observed unless an excess of peroxynitrite over oxyhemoglobin was used, in agreement with a marginal formation of nitrogen dioxide. The results obtained support a role of oxyhemoglobin as a relevant intravascular sink of peroxynitrite.  相似文献   

16.
Ozone, a strong oxidant present in summer smog, is thought to primarily react with antioxidant molecules found in the epithelial lining fluid of the respiratory tract. In humans, as much as 40% of inhaled ozone can be removed in the nasal cavity where the major extracellular antioxidant has been identified as uric acid. The present study was undertaken to examine urate/oxidant interactions in human nasal lavage fluid following in vitro exposure to ozone at concentrations relevant to the U.K. Lavage fluid was collected from 8 volunteers using a modified Foley catheter which permits prolonged contact of isotonic saline with the anterior nasal cavity. Nasal lavage samples in multiwell plates were exposed to ozone at concentrations of 50, 100 and 250 ppb. Samples were removed at intervals from 15 to 240 min following exposure and assayed for uric acid depletion. Uric acid concentrations in the nasal lavage were found to fall from 8.52 (time zero) to 3.99 μM, 0.05 and 0.07 μM after 240 min at 50, 100 and 250 ppb ozone respectively. At a non-environmentally relevant ozone concentration of 1000 ppb, uric acid was completely depleted after 60 min. Regression analysis showed a linear correlation between rate of loss of urate and ozone concentration (R2 = 0.97). A novel, non-invasive technique is described to investigate antioxidant compromise and its importance in individual subjects. We conclude that uric acid in nasal lavage samples is scavenged by ozone in a dose and time dependant manner.  相似文献   

17.
N,N-Diethyldithiocarbamate (DDC), a copper-chelating agent, not only inhibits superoxide dismutase activity in the red cell, but also depletes glutathione and promotes the production of methemoglobin, sulfhemoglobin, and small amounts of lipid peroxidation products. DDC reacts with oxyhemoglobin to yield disulfiram, hydrogen peroxide, and methemoglobin. Disulfiram and hydrogen peroxide both convert GSH to GSSG, while DDC reduces methemoglobin to oxyhemoglobin. Although disulfiram also reacts with the hemoglobin sulfhydryl groups, this reaction does not play a role in the conversion of GSH to GSSG. Other hemoglobin derivatives, ferrous, and ferric ions do not catalyze the oxidation of GSH by DDC. These results support the conclusion that DDC reacts with the super-oxo-ferriheme complex of oxyhemoglobin to generate hydrogen peroxide and disulfiram and that the cyclic conversion of oxyhemoglobin to methemoglobin and DDC and disulfiram results in the net oxidation of GSH. Thus, damage to DDC-treated erythrocytes exposed to a putative superoxide-generating toxin, such as 1,4-naphthoquinone-2-sulfonate, may actually be due to diminished GSH concentration and hemoglobin oxidation rather than to superoxide radicals. Glucose added to the incubation medium of DDC-treated erythrocytes fully prevented glutathione depletion but not the oxidation of oxyhemoglobin to methemoglobin. Several other copper-chelating agents either failed to inhibit the activity of purified superoxide dismutase or when incubated with erythrocytes produced more extensive GSH depletion and hemoglobin oxidation than DDC. It is concluded that the interpretation of results with erythrocytes exposed to copper-chelating agents must consider their effects on GSH and hemoglobin as well as on superoxide dismutase inhibition. Moreover, one must be mindful of the interference by DDC in the analysis of GSH with 5,5'-dithiobis-(2-nitrobenzoic acid) in the absence of sufficient quantities of metaphosphoric acid to destroy DDC and that contamination of DDC with trace quantities of disulfiram may be a significant problem.  相似文献   

18.
Nitrofurantoin was found to interact with HbO2 to cause the concomitant formation of methemoglobin and superoxide. The rate of formation of methemoglobin and superoxide was linearly dependent upon the concentration of nitrofurantoin and could be inhibited by superoxide dismutase, catalase, or the prior conversion of HbO2 to ethylioscyanoferrohemoglobin. The ability of nitrofurantoin to interact with HbO2 and cause superoxide formation may represent one mechanism by which it produces red cell toxicity and suggests that generation of superoxide in erythrocytes may occur via a different mechanism than that which occurs in microsomes.  相似文献   

19.
Reactions of human oxyhemoglobin A with iron(II) compounds have been investigated. Human oxyhemoglobin (HbO2) reacts with aquopentacyanoferrate(II), Fe(II)(CN)5H2O3-, to yield hydrogen peroxide, aquomethemoglobin and Fe(III)(CN)5H2O2-. The reaction follows a second order rate law, first order in the pentacyanide and in HbO2. Since reaction rates are lower in the presence of catalase, the H2O2 produced must promote metHb formation in reactions independent of pentacyanide. Changes in concentrations of effectors (e.g. H+, inositol hexaphosphate, Cl-, and Zn2+), alkylation of beta-93 cysteine with N-ethylmaleimide, and substitution at distal histidine (as in Hb Zurich with beta-63 His----Arg) in each case can markedly affect pentacyanide reaction rates demonstrating a fine control of rates by protein structure. Hexacyanoferrate(II) (ferrocyanide) reacts with HbO2 to produce cyano-metHb as well as aquo-metHb but the reaction with the hexacyanide is much slower than with the aquopentacyanide. Iron(II) EDTA converts HbO2 to deoxy-Hb with no evidence for formation of metHb as an intermediate. These findings support a mechanism in which the pentacyanide anion reacts directly with coordinated dioxygen. One-electron transfers to O2 from both pentacyanide iron(II) and heme iron(II) result in the formation of a mu-peroxo intermediate, HbFe(III)-O-O-Fe(III) (CN)5(3-). Hydrolysis of this intermediate yields metHb . H2O, H2O2, and FeIII(CN)5H2O2-. The reaction of HbO2 with Fe(CN)6(4-) must follow an outer sphere electron transfer mechanism. However, the very slow rate that is seen with Fe(CN)6(4-) could arise entirely from the pentacyanide produced from loss of one cyanide ligand from the hexacyanide. Fe(II)EDTA reacts rapidly with free O2 in solution but can not interact directly with the heme-bound O2 of HbAO2. The dynamic character of the O2 binding sites apparently permits access of the Fe2+ of the pentacyanide to coordinated dioxygen but the protein structure is not sufficiently flexible to allow the larger Fe2+EDTA molecule to react with bound O2. It is necessary for maintenance of the oxygen transport function of the red cell for reductants such as the methemoglobin reductase system, glutathione, and ascorbate to be able to reduce metHb to deoxy-Hb. It is also important for these reductants to be unable to donate an electron to HbO2 to yield H2O2 and metHb. Thus, a mechanistic requirement for the delivery of one-electron directly to the dioxygen ligand, if peroxide is to be produced, enables the protein to protect the oxygenated species from those electron donors normally present in the cell by denying these reductants steric access to coordinated O2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
There is increasing interest in the intrinsic activity in the resting brain, especially that of ultraslow and slow oscillations. Using near-infrared spectroscopy (NIRS), electroencephalography (EEG), blood pressure (BP), respiration and heart rate recordings during 5 minutes of rest, combined with cross spectral and sliding cross correlation calculations, we identified a short-lasting coupling (duration [Formula: see text] s) between prefrontal oxyhemoglobin (HbO2) in the frequency band between 0.07 and 0.13 Hz and central EEG alpha and/or beta power oscillations in 8 of the 9 subjects investigated. The HbO2 peaks preceded the EEG band power peaks by 3.7 s in 6 subjects, with moderate or no coupling between BP and HbO2 oscillations. HbO2 and EEG band power oscillations were approximately in phase with BP oscillations in the 2 subjects with an extremely high coupling (squared coherence [Formula: see text]) between BP and HbO2 oscillation. No coupling was identified in one subject. These results indicate that slow precentral (de)oxyhemoglobin concentration oscillations during awake rest can be temporarily coupled with EEG fluctuations in sensorimotor areas and modulate the excitability level in the brains' motor areas, respectively. Therefore, this provides support for the idea that resting state networks fluctuate with frequencies of between 0.01 and 0.1 Hz (Mantini et.al. PNAS 2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号