首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autolysis is self-degradation of the bacterial cell wall that results in the release of enzymes and DNA. Autolysis of starter bacteria, such as lactococci and propionibacteria, is essential for cheese ripening, but our understanding of this important process is limited. This is mainly because the current tools for measuring autolysis cannot readily be used for analysis of bacteria in mixed populations. We have now addressed this problem by species-specific detection and quantification of free DNA released during autolysis. This was done by use of 16S rRNA gene single-nucleotide extension probes in combination with competitive PCR. We analyzed pure and mixed populations of Lactococcus lactis subsp. lactis and three different species of Propionibacterium. Results showed that L. lactis subsp. lactis INF L2 autolyzed first, followed by Propionibacterium acidipropionici ATCC 4965, Propionibacterium freudenreichii ISU P59, and then Propionibacterium jensenii INF P303. We also investigated the autolytic effect of rennet (commonly used in cheese production). We found that the effect was highly strain specific, with all the strains responding differently. Finally, autolysis of L. lactis subsp. lactis INF L2 and P. freudenreichii ISU P59 was analyzed in a liquid cheese model. Autolysis was detected later in this cheese model system than in broth media. A challenge with DNA, however, is DNA degradation. We addressed this challenge by using a DNA degradation marker. We obtained a good correlation between the degradation of the marker and the target in a model experiment. We conclude that our DNA approach will be a valuable tool for use in future analyses and for understanding autolysis in mixed bacterial populations.  相似文献   

2.
Preparations of intact genomic DNA from 23 strains ofPropionibacterium freudenreichii were compared by digestion with restriction endonucleases and subsequent transverse alternating field electrophoresis (TAFE). Seven restriction enzymes,AsnI,DraI,HpaI,SnaBI,SpeI,SspI, andXbaI, produced DNA fragments useful for strain comparisons. A characteristic restriction fragment pattern was identified for 18 of the 23 strains. Estimates for the genome size of theP. freudenreichii strains ranged from 1.6×106 to 2.3×106 base pairs based on the sum of fragment sizes obtained with restriction digests. Restriction endonuclease patterns resolved by TAFE are useful for strain identification.  相似文献   

3.
The complete nucleotide sequence of pRGO1, a cryptic plasmid from Propionibacterium acidipropionici E214, was determined. pRGO1 is 6,868 bp long, and its G+C content is 65.0%. Frame analysis of the sequence revealed six open reading frames, which were designated Orf1 to Orf6. The deduced amino acid sequences of Orf1 and Orf2 showed extensive similarities to an initiator of plasmid replication, the Rep protein, of various plasmids of gram-positive bacteria. The amino acid sequence of the putative translation product of orf3 exhibited a high degree of similarity to the amino acid sequences of DNA invertase in several bacteria. For the putative translation products of orf4, orf5, and orf6, on the other hand, no homologous sequences were found. The function of these open reading frames was studied by deletion analysis. A shuttle vector, pPK705, was constructed for shuttling between Escherichia coli and a Propionibacterium strain containing orf1 (repA), orf2 (repB), orf5, and orf6 from pRGO1, pUC18, and the hygromycin B-resistant gene as a drug marker. Shuttle vector pPK705 successfully transformed Propionibacterium freudenreichii subsp. shermanii IFO12426 by electroporation at an efficiency of 8 × 106 CFU/μg of DNA under optimized conditions. Transformation of various species of propionibacteria with pPK705 was also performed at efficiencies of about 104 to 107 CFU/μg of DNA. The vector was stably maintained in strains of P. freudenreichii subsp. shermanii, P. freudenreichii, P. pentosaceum, and P. freudenreichii subsp. freudenreichii grown under nonselective conditions. Successful manipulation of a host-vector system in propionibacteria should facilitate genetic studies and lead to creation of genes that are useful industrially.  相似文献   

4.
A comparative study was carried out in anaerobic batch cultures on 20 g/l of either glycerol or glucose using two propionibacteria strains, Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. In all cases, fermentation end-products were the same and consisted of propionic acid as the major product, acetic acid as the main by-product and two minor metabolites, n-propanol and succinic acid. Evidence was provided that greater production of propionic acid by propionibacteria was obtained with glycerol as carbon and energy sources. P. acidipropionici showed higher efficiency in glycerol conversion to propionic acid with a faster substrate consumption (0.64 g l−1 h−1) and a higher propionic acid production (0.42 g l−1 h−1 and 0.79 mol/mol). The almost exclusive production of propionic acid from glycerol by this bacterium suggested an homopropionic tendency of this fermentation. Acetic acid final concentration was two times lower on glycerol (2 g/l) than on glucose (4 g/l) for both micro-organisms. P. freudenreichii ssp. shermanii exhibited a glycerol fermentation pattern typical of non-associated glycerol-consumption-product formation. This could indicate a particular metabolism for P. freudenreichii ssp. shermanii oriented towards the production of other specific components. These results tend to show that glycerol could be an excellent alternative to conventional carbon sources such as carbohydrates for propionic acid production. Received: 21 May 1999 / Accepted: 1 November 1999  相似文献   

5.
Dairy propionic acid bacteria, particularly the species Propionibacterium freudenreichii, play a major role in the ripening of Swiss type cheese. Isometric and filamentous bacteriophages infecting P. freudenreichii have previously been isolated from cheese. In order to determine the origin of these bacteriophages, lysogeny of P. freudenreichii was determined by isometric bacteriophage type analysis. The genomic DNA of 76 strains were hybridized with the DNA of nine bacteriophages isolated from Swiss type cheeses, and the DNA of 25 strains exhibited strong hybridization. Three of these strains released bacteriophage particules following UV irradiation (254 nm) or treatment with low concentrations of mitomycin C. A prophage-cured derivative of P. freudenreichii was readily isolated and subsequently relysogenized. Lysogeny was therefore formally demonstrated in P. freudenreichii.  相似文献   

6.
This study used in vivo13C NMR spectroscopy to directly examine bidirectional reactions of the Wood–Werkman cycle involved in central carbon metabolic pathways of dairy propionibacteria during pyruvate catabolism. The flow of [2-13C]pyruvate label was monitored on living cell suspensions of Propionibacterium freudenreichii subsp. shermanii and Propionibacterium acidipropionici under acidic conditions. P. shermanii and P. acidipropionici cells consumed pyruvate at apparent initial rates of 161 and 39 μmol min−1 g−1 (cell dry weight), respectively. The bidirectionality of reactions in the first part of the Wood–Werkman cycle was evident from the formation of intermediates such as [3-13C]pyruvate and [3-13C]malate and of products like [2-13C]acetate from [2-13C]pyruvate. For the first time alanine labeled on C2 and C3 and aspartate labeled on C2 and C3 were observed during [2-13C]pyruvate metabolism by propionibacteria. The kinetics of aspartate isotopic enrichment was evidence for its production from oxaloacetate via aspartate aminotransferase. Activities of a partial tricarboxylic acid pathway, acetate synthesis, succinate synthesis, gluconeogenesis, aspartate synthesis, and alanine synthesis pathways were evident from the experimental results.  相似文献   

7.
Aims: To determine the effects of supplemented copper (Cu2+) on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. Methods and Results: Thirteen strains belonging to Lactobacillus delbrueckii, Lactobacillus helveticus, Lactobacillus rhamnosus, Streptococcus thermophilus or Propionibacterium freudenreichii species were exposed to various copper concentrations in the proper growth medium at relevant growth temperatures, and the effects of supplemented copper on bacterial growth and cell viability were determined by optical density and pH measurements, also by platings. Among the species considered, L. delbrueckii was the most copper resistant and S. thermophilus the most sensitive to copper. Anaerobic conditions increased this sensitivity significantly. There was also a considerable amount of variation in copper resistance at strain level. Conclusions: Copper resistance is both a species- and strain-dependent property and may reflect variability in copper-binding capacities by cell wall components among species and strains. In addition, the chemical state of copper may be involved. Significance and Impact of the Study: This study revealed that copper resistance is a highly variable property among starter and adjunct strains, and this variability should be considered when strains are selected for Emmental cheese manufacture.  相似文献   

8.
《Anaerobe》2002,8(5):259-267
In the present study, factors influencing the synthesis and activity of β-galactosidase of two strains of Propionibacterium acidipropionici with some probiotic properties are described for the first time. The enzyme 6-phospho-β-D-galactosidase of the PEP-PTS system was not detected, suggesting that P. acidipropionici metabolize lactose only by using β-galactosidase. The highest enzymatic activities were obtained from cultures developed in a basal broth medium containing 1.0% sodium lactate or 0.25% lactose. Maximum β-galactosidase activity from cell-free extracts of the strains was obtained at pH 7.0 and 50°C, but a high activity was even detected at 37°C. The enzyme was competitively inhibited by lactose and activated by glucose and sodium lactate. The remaining activities after heating cell-free extracts up to 20 min at 60°C were 70% and 25% of untreated control activities for P. acidipropionici Q4 and CRL 1198, respectively. Cations like Mg2+, Mn2+, Li+, Na+, and K+ acted as stimulators of the β-galactosidase activity whereas Ca2+, Co2+, Ni2+, Hg2+ and Cu2+ showed inhibitory effect in different extent. These results suggest that the environmental conditions commonly present in the human's intestine may be adequate for the synthesis and activity of β-galactosidase from these strains of Propionibacterium. The enzyme resist the cooking temperature of Swiss-type cheeses in different extent depending on the strain tested and most of the cations present in milk stimulate the enzymatic activity. Our results suggest that a cheese would be an appropriate vehicle for delivery of β-galactosidase from propionibacteria to the host and efforts to develop a Swiss-type probiotic cheese for lactose intolerant persons should be done.  相似文献   

9.
Dairy propionibacteria are essential starters for Emmental cheese manufacture. The behavior of three commercial strains of Propionibacterium freudenreichii subsp. shermanii (P.f. 1, P.f. 2 and P.f 3) were studied in a liquid medium under air and N2 atmosphere using an on‐line pressure measurement technique. Growth kinetics and metabolite production were characterized under conditions usually reported as “optimal conditions” (pH 6.5, NaCl 0 %, temperature 30 °C) and also evaluated under “stressful conditions” (pH 5.2, NaCl 2 %, temperature 20 °C) simulating the cheese ripening conditions. In both cases, the effects of oxygen on growth were strain‐dependent. Under “stressful conditions”, two of the three strains were inhibited by oxygen under conditions of air atmosphere, while all three strains grew under conditions of N2 atmosphere. In the latter case, the duration of the lag phase and the maximum rate of pressure variation were significantly different, however, no significant differences were found between the strains with regard to the total fermentation time. Under “optimal conditions” metabolite production was strain‐dependent. In an air atmosphere, all strains produced more acetate and CO2 and less propionate than in a nitrogen atmosphere.  相似文献   

10.

Background

Propionibacterium freudenreichii is essential as a ripening culture in Swiss-type cheeses and is also considered for its probiotic use [1]. This species exhibits slow growth, low nutritional requirements, and hardiness in many habitats. It belongs to the taxonomic group of dairy propionibacteria, in contrast to the cutaneous species P. acnes. The genome of the type strain, P. freudenreichii subsp. shermanii CIRM-BIA1 (CIP 103027T), was sequenced with an 11-fold coverage.

Methodology/Principal Findings

The circular chromosome of 2.7 Mb of the CIRM-BIA1 strain has a GC-content of 67% and contains 22 different insertion sequences (3.5% of the genome in base pairs). Using a proteomic approach, 490 of the 2439 predicted proteins were confirmed. The annotation revealed the genetic basis for the hardiness of P. freudenreichii, as the bacterium possesses a complete enzymatic arsenal for de novo biosynthesis of aminoacids and vitamins (except panthotenate and biotin) as well as sequences involved in metabolism of various carbon sources, immunity against phages, duplicated chaperone genes and, interestingly, genes involved in the management of polyphosphate, glycogen and trehalose storage. The complete biosynthesis pathway for a bifidogenic compound is described, as well as a high number of surface proteins involved in interactions with the host and present in other probiotic bacteria. By comparative genomics, no pathogenicity factors found in P. acnes or in other pathogenic microbial species were identified in P. freudenreichii, which is consistent with the Generally Recognized As Safe and Qualified Presumption of Safety status of P. freudenreichii. Various pathways for formation of cheese flavor compounds were identified: the Wood-Werkman cycle for propionic acid formation, amino acid degradation pathways resulting in the formation of volatile branched chain fatty acids, and esterases involved in the formation of free fatty acids and esters.

Conclusions/Significance

With the exception of its ability to degrade lactose, P. freudenreichii seems poorly adapted to dairy niches. This genome annotation opens up new prospects for the understanding of the P. freudenreichii probiotic activity.  相似文献   

11.
A collection of propionibacteria was screened for bacteriocin production. A new bacteriocin named propionicin T1 was isolated from two strains of Propionibacterium thoenii. This bacteriocin shows no sequence similarity to other bacteriocins. Propionicin T1 was active against all strains of Propionibacterium acidipropionici, Propionibacterium thoenii, and Propionibacterium jensenii tested and also against Lactobacillus sake NCDO 2714 but showed no activity against Propionibacterium freudenreichii. The bacteriocin was purified, and the N-terminal part of the peptide was determined with amino acid sequencing. The corresponding gene pctA was sequenced, and this revealed that propionicin T1 is produced as a prebacteriocin of 96 amino acids with a typical sec leader, which is processed to give a mature bacteriocin of 65 amino acids. An open reading frame encoding a protein of 424 amino acids was found 68 nucleotides downstream the stop codon of pctA. The N-terminal part of this putative protein shows strong similarity with the ATP-binding cassette of prokaryotic and eukaryotic ABC transporters, and this protein may be involved in self-protection against propionicin T1. Propionicin T1 is the first bacteriocin from propionibacteria that has been isolated and further characterized at the molecular level.  相似文献   

12.
Dairy propionibacteria are actinomycetales found in various fermented food products. The main species, Propionibacterium freudenreichii, is generally recognized as safe and used both as probiotic and as cheese starter. Its probiotic efficacy tightly depends on its tolerance towards digestive stresses, which can be largely modulated by the ingested delivery vehicle. Indeed, tolerance of this bacterium is enhanced when it is consumed within a fermented dairy product, compared to a dried probiotic preparation. We investigated both stress tolerance and protein neosynthesis upon growth in i) chemically defined or ii) aqueous phase of Emmental cheeses. Although the same final population level was reached in both media, a slower growth and an enhanced survival of CIRM BIA 1 strain of P. freudenreichii subsp. shermanii was observed in Emmental juice, compared to chemically defined medium. This was accompanied by differences in substrates used and products released as well as overexpression of various early stress adaptation proteins in Emmental juice, compared to chemically defined medium, implied in protein folding, in aspartate catabolism, in biosynthesis of valine, leucine and isoleucine, in pyruvate metabolism in citrate cycle, in the propionate metabolism, as well as in oxidoreductases. All these changes led to a higher digestive stress tolerance after growth in Emmental juice. Mechanisms of stress adaptation were induced in this environment, in accordance with enhanced survival. This opens perspectives for the use of hard and semi-hard cheeses as delivery vehicle for probiotics with enhanced efficacy.  相似文献   

13.

Background  

This study describes a strategy to select and isolate spontaneous riboflavin-overproducing strains of Lactobacillus (Lb.) plantarum, Leuconostoc (Lc.) mesenteroides and Propionibacterium (P.) freudenreichii.  相似文献   

14.
Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi‐hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R‐IVET) assay in combination with a high‐throughput cheese‐manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real‐time monitoring of gene expression in cheese for up to 200 h after the cheese‐manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non‐coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified.  相似文献   

15.
Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and Staphylococcus. The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products.  相似文献   

16.
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) can cause salmonellosis in pigs and humans. Currently, the most common method used for the subtyping of this Salmonella serovar is pulsed field gel electrophoresis (PFGE) using XbaI as a DNA digestion enzyme. In this study, we compared and combined PFGE with the randomly amplified polymorphic DNA method, for the typing of 95 S. Choloraesuis strains isolated from diseased pigs. Using PFGE with XbaI, with AvrII, and with SpeI digested DNA, 29, 74, and 40 patterns, respectively, were obtained. Also, 53, 15, and 35 strains, respectively, belong to the major patterns X1, A1, and S1. When these three digestion patterns were combined, 83 PFGE pattern combinations were obtained. On the other hand, using RAPD with selected primer alone generated 76 patterns, and 11 strains which fell within a single X1A1S1 PFGE combination pattern were discriminated into 10 patterns. Thus, for S. Choloraesuis, PFGE with AvrII allowed higher discrimination than PFGE with XbaI, and some of the PFGE groupings obtained by combining the XbaI, AvrII and SpeI digestion patterns were further subdivided by the RAPD method.  相似文献   

17.
Aims: Short branched-chain fatty acids (BCFAs) are cheese flavour compounds, which result from the conversion of branched-chain amino acids (BCAAs). In Swiss cheese, the production of short BCFAs is mainly performed by Propionibacterium freudenreichii and is strain dependent. Our aim was to investigate the possible links between the biosynthesis of short BCFAs and membrane BCFAs in P. freudenreichii. Methods and Results: Short and membrane BCFAs were analysed by gas chromatography-mass spectrometry. Two strains differing in their capacities to release short BCFAs were selected. Tri-deuterated-labelled leucine was used in both strains as a precursor of short extracellular iso-BCFAs and of membrane iso-BCFAs. The proportions of anteiso : iso BCFAs synthesized varied as function of the BCAAs provided in the growth medium, from 72 : 28 to 100 : 0, with leucine and valine, and with isoleucine as sole BC precursors, respectively. The branching pattern of short BCFAs exactly matched that of membrane BCFAs, whatever the exogenous BCAAs provided. Conclusions: The biosynthesis of short BCFAs is closely related to that of membrane BCFAs in P. freudenreichii. Significance and Impact of the Study: The biosynthesis of short BCFAs in P. freudenreichii depends more on the strain than on the presence of exogenous BC precursors.  相似文献   

18.
Propionic acid bacteria (PAB) are important as starter cultures for the dairy industry in the manufacture of Swiss-type cheeses, in which they are involved in the formation of eyes and are responsible for the typical flavour and aroma. These characteristics are mainly due to the classical propionic acid fermentation, but also the conversion of aspartate to fumarate and ammonia by the enzyme aspartase and the subsequent reduction of fumarate to succinate, which occur in dairy Propionibacterium freudenreichii ssp. shermanii and ssp. freudenreichii starter strains. Additionally, the metabolism of free amino acids may be partly responsible for secondary fermentation and the subsequent split defects in cheese matrix. Here a method for aspartase activity was established and a number of dairy propionibacteria belonging to P. freudenreichii ssp. shermanii and freudenreichii were screened for this enzyme activity. A wide range of aspartase activity could be found in PAB isolates originating from cheese. The majority, i.e. 70% of the 100 isolates tested, showed very low levels of aspartate activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号