首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduction in VLDL, but not HDL, in plasma of rats deficient in choline   总被引:2,自引:0,他引:2  
We have analyzed plasma lipoprotein levels in young male rats fed a choline-deficient diet for 3 days. We confirmed previous studies that choline deficiency promotes 6.5-fold accumulation of triacyglycerol in the liver (23.9 +/- 6.0 versus 3.69 +/- 0.92 mumol/g liver) and reduction of triacylglycerol concentration in plasma by 60% (0.17 +/- 0.04 versus 0.46 +/- 0.10 mumol/mL plasma). Agarose gel electrophoresis showed that the plasma very low density lipoprotein (VLDL) levels were reduced in choline-deficient rats, but the concentration of plasma high density lipoproteins (HDL) was not affected. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis of fractionated plasma lipoproteins revealed that the concentrations of apolipoproteins (apo) BH, BL, and E in VLDL from choline-deficient rats were 37.1, 11.0, and 37.2% of normal levels, respectively. In contrast, the amount of apo A-I, the major one in HDL, was almost unchanged. Correspondingly, there were decreased lipid (mainly phosphatidylcholine and triacylglycerol) levels in VLDL from choline-deficient rats, but no change in the levels of phosphatidylcholine, cholesterol, and cholesterol ester in HDL. There were similar levels of apo B and E (components of VLDL) in homogenates of livers from normal and choline-deficient rats, as determined by immunoblotting. These results support the hypothesis that choline deficiency causes reduction of VLDL, but not HDL, levels in plasma as a consequence of impaired hepatic VLDL secretion.  相似文献   

2.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   

3.
We characterized the lipoproteins produced by perfused rat liver in recirculating and non-recirculating systems. The apolipoprotein (apo) B of the perfusate very low density lipoprotein (VLDL) and low density lipoprotein (LDL) were labeled with a radioactive precursor amino acid in both systems, suggesting that newly synthesized apo B was secreted in association with VLDL and LDL. When the lipoproteins obtained from the non-recirculating perfusate were injected into rats in vivo, the half life of the VLDL was 13 min and most of it was converted to LDL, while that of the LDL was 5.2 h, indicating that the perfusate LDL was different from the VLDL with respect to its metabolic fate. These observations suggest that both VLDL and LDL are produced as independent primary products in the liver, although the majority of LDL is derived from VLDL in vivo. The nascent lipoproteins in the non-recirculating perfusate were richer in apo E than those in the recirculating perfusate, and a part of the apo E disappeared when the VLDL was added to the recirculating perfusate. The particle sizes of the VLDL and LDL were examined by electron microscopy, which revealed that those in the non-recirculating perfusate were more homogeneous and smaller than the plasma counterparts, while those in the recirculating perfusate were more heterogeneous and their mean diameter was closer to that of the plasma lipoproteins, than in the case of non-recirculating perfusate. These observations suggest that apo E secreted with the nascent lipoproteins may be picked up by the liver just after secretion, causing the heterogeneity in size, as observed in the case of plasma lipoproteins.  相似文献   

4.
Summary Confluent monolayers of normal human hepatocytes obtained by collagenase perfusion of liver pragments were incubated in a serum-free medium. Intracellular apolipoproteins apo AI, apo C, apo B, and apo E were detected between Day 1 and Day 6 of the culture by immunoenzymatic staining using polyclonal antibodies directed against these apoproteins and monoclonal antibodies directed against both forms of apo B (B100 and B48). Translation of mRNA isolated from these hepatocytes in an acellular system revealed that apo AI and apo E were synthesized as the precusor forms of mature plasma apo AI and apo E. Three lipoprotein fractions corresponding to the density of very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) were isolated from the medium at Day 5 of culture and examined by electron microscopy after negative staining. VLDL and LDL particles are similar in size and shape to plasma lipoproteins; spherical HDL are larger than normal plasma particles isolated at the same density. Their protein represented 44, 19.5, and 36.5% respectively, of the total lipoprotein protein. The secretion rate of VLDL protein corresponded to that measured in primary cultures of rat hepatocytes. After incorporation of [3H]glycerol, more than 92% of the [3H]triglyceride secreted into the medium was recovered in the VLDL fraction. These results demonstrate that primary cultures of normal human hepatocytes are able to synthesize and secrete lipoproteins and thus could be a useful model to study lipoprotein metabolism in human liver.  相似文献   

5.
The whole lipoprotein spectrum of human plasma may be divided into atherosclerotic and anti-atherosclerotic lipoproteins. To the first class belong apolipoprotein (apo) B and some apoE-containing lipoproteins of the very-low-density (VLDL), intermediate-density (IDL) and low-density (LDL) lipoprotein fractions. Anti-atherosclerotic lipoproteins are apoA-containing high-density lipoproteins (HDL). Circulating plasma lipoproteins are catabolized mainly by specific cell surface receptors (R) which react with apoB and apoE (B/E-R), for apoE (E-R) or for apoA (HDL-R). Whereas the B/E-R and E-R are responsible for the cellular uptake of lipoproteins and their lipid load by various organs, HDL-R are thought to promote lipid (cholesterol) efflux. There is an additional class of lipoprotein receptors, the so called scavenger-R which are responsible for the removal of altered or degraded lipoproteins for the circulation. Under normal physiological conditions, the concerted action of these receptors warrants efficient lipoprotein turnover and direction into target organs. Derangements of this system, however, may lead to the deposition and accumulation of atherogenic lipids, notably free cholesterol (FC) and cholesteryl esters (CE) in arterial tissue causing atherosclerosis and cardiac death.  相似文献   

6.
The hypertriglyceridemia associated with streptozotocin-induced diabetes in rats is largely reflected in the plasma lipoproteins of density less than 1.006 g/ml. Analysis of the plasma apolipoproteins of these rats indicated marked alterations in both the total levels and in the lipoprotein distribution of the major apolipoproteins. In whole plasma, diabetes was associated with significant increases in apolipoprotein (apo)-AIV, apo-AI, and apo-B (mainly in the intestinally derived apo-B240) and a marked decrease in apo-E. In the d less than 1.006 g/ml lipoprotein fraction (very-low-density lipoproteins (VLDL], there were significant increases in apo-B240, apo-AI, and apo-AIV and decreased levels of apo-E and the C apolipoproteins. The decrease in apo-C was primarily due to lower levels of apo-CII, and the ratio of the lipoprotein lipase inhibitor, apo-CIII, to the lipoprotein lipase activator, apo CII, was significantly increased over that in controls. The comparative clearance of triglycerides of VLDL particles from control and diabetic rat plasma was tested in recirculating heart perfusion in vitro. During 45-min perfusions of hearts from control donor rats, lipolysis of triglycerides of VLDL from diabetic rats was only 63-64% of that using plasma VLDL from control rats. Perfusion of hearts from diabetic rats with VLDL from control rats gave lipolysis values of only 53% of that obtained with normal hearts. Where both the VLDL and hearts were obtained from diabetic rats, lipolysis was 23% of that observed when both the lipoprotein and the organ were from control rats. The data suggest that in addition to depressed lipoprotein lipase activity in the tissue from diabetic rats, there are also major compositional changes in circulating lipoproteins which may contribute to defective triglyceride clearance from the circulation.  相似文献   

7.
Lipoprotein(a) (Lp(a)) is an atherosclerosis-causing lipoprotein that circulates in human plasma as a complex of low density lipoprotein (LDL) and apolipoprotein(a) (apo(a)). It is not known whether apo(a) attaches to LDL within hepatocytes prior to secretion or in plasma subsequent to secretion. Here we describe the development of a line of mice expressing the human apo(a) transgene under the control of the murine transferrin promoter. The apo(a) was secreted into the plasma, but circulated free of lipoproteins. When human (h)-LDL was injected intravenously, the circulating apo(a) rapidly associated with the lipoproteins, as determined by nondenaturing gel electrophoresis. Human HDL and mouse LDL had no such effect. When h-VLDL was injected, there was a delayed association of apo(a) with the lipoprotein fraction which suggests that apo(a) preferentially associated with a metabolic product of VLDL. The complex of apo(a) with LDL formed both in vivo and in vitro was resistant to boiling in the presence of detergents and denaturants, but was resolved upon disulfide reduction. These studies suggest that apo(a) fails to associate with mouse lipoproteins due to structural differences between human and mouse LDL, and that Lp(a) formation can occur in plasma through the association of apo(a) with circulating LDL.  相似文献   

8.
Six mouse monoclonal antibodies against rabbit apolipoprotein E (apo E) have been developed. Of these monoclonal antibodies, clone 5 revealed a high affinity for purified apo E, very low density lipoprotein (VLDL) and beta-VLDL. This monoclonal antibody was used to prepare an immunoaffinity column. Coupled to Sepharose 4B, this antibody allowed complete removal of lipoproteins containing apo E from plasma of New Zealand white (NZW) rabbits; 62, 46, 14, and 3% of VLDL-, IDL-, LDL-, and HDL-protein, respectively, were bound to the anti-apo E affinity column. The bound VLDL was significantly rich in free cholesterol (FC) and cholesteryl esters (CE) relative to the unbound VLDL, whereas bound IDL, LDL and HDL were significantly rich in FC only. All of the bound fractions were characterized by significantly increased ratios of FC/phospholipids (PL). These results indicate that the two lipoprotein populations with and without apo E have different lipid compositions. The relatively high content of cholesterol in lipoproteins containing apo E suggests a contribution of apo E to plasma cholesterol transport.  相似文献   

9.
We have identified a new species of apolipoprotein (apo) B in an individual with heterozygous hypobetalipoproteinemia. The new apo B (apo B-32) is the result of a single point mutation (1450 Gln----Stop) in the apo B gene that prevents full length translation. Apo B-32 is predicted to contain the 1449 amino-terminal amino acids of apo B-100 and is associated with a markedly decreased low density lipoprotein (LDL) cholesterol level. The density distribution of apo B-32 in the plasma lipoproteins makes it unique amongst other truncated apo B species. Normally, apo B-100 is found in both very low density lipoprotein (VLDL) and LDL particles. However, the majority of the apo B-32 protein was found in the high density lipoprotein (HDL) and lipoprotein-deplete (d greater than 1.21 g/ml) fractions, suggesting that it was mainly assembled into abnormally dense lipoprotein particles. A small amount of apo B-32 was also found in the LDL, making it the shortest known apo B variant capable of forming particles in this density range. Apo B-32 was undetected in VLDL. The apo B-32 mutation further defines the minimum length of the apo B protein that is required for the assembly of LDL.  相似文献   

10.
Studies have been performed to determine the proportion of the esterified cholesterol in high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) that is attributable to a direct action of lecithin: cholesterol acyltransferase on each lipoprotein fraction. Esterification of [3H]cholesterol was examined in 37 degrees C incubations of either: (a) unseparated whole plasma, (b) plasma reconstituted after prior ultracentrifugation to separate the 1.21 g/ml supernatant, (c) a mixture comprising the 1.21 g/ml supernatant of plasma and purified lecithin: cholesterol acyltransferase or (d) the same mixture as (c) after supplementation with a preparation of partially purified lipid transfer protein. Each of these incubations was performed using samples collected from four different subjects, two of whom had normal and two of whom had elevated concentrations of plasma triacylglycerol. At the completion of 3-h incubations, the lipoproteins were separated into multiple fractions by gel filtration to obtain a continuous profile of esterified [3H]cholesterol across the whole spectrum of lipoproteins. There was an appearance of esterified [3H]cholesterol in each of the major lipoprotein fractions in all incubations. In unseparated plasma, 56% of the total (mean of four experiments) was in HDL, 33% in LDL and 11% in VLDL. A comparable distribution was observed in the incubations of reconstituted plasma and in the samples to which partially purified lipid transfer protein had been added. In the absence of lipid transfer protein activity in incubations containing purified lecithin: cholesterol acyltransferase, 73% of the esterified [3H]cholesterol was in HDL, 25% in LDL and only 1% in VLDL. It has been concluded that at physiological concentrations of lipoproteins, 70-80% of the cholesterol esterifying action of lecithin: cholesterol acyltransferase is confined to the HDL fraction, with most of the remainder involving the LDL fraction. Of the newly formed esterified cholesterol incorporated into LDL during incubations of unseparated plasma, it was apparent that more than 70% was independent of activity of the lipid transfer protein. Of that incorporated into VLDL in unseparated plasma, in contrast, almost 90% was derived as a transfer from other fractions as a consequence of activity of the lipid transfer protein.  相似文献   

11.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

12.
Lipolysis of human very low density lipoproteins (VLDL) by lipoprotein lipase (LPL) was inhibited in the presence of high density lipoproteins (HDL), anti-apolipoprotein (apo) CII, and by increasing the VLDL free cholesterol content but not with anti-apo CIII or lipoprotein-free plasma. The experiments lend direct evidence that the composition of VLDL and their milieu are important determinants of lipolysis by LPL. Apo CIII may not be critical in LPL mediated VLDL catabolism.  相似文献   

13.
Previous studies in our laboratory have shown that very-low-density lipoproteins (VLDL) synthesized by the intestine of the diet-induced hypercholesterolemic rat are enriched in cholesteryl esters and unesterified cholesterol compared with intestinal VLDL from control rats. In these studies, we isolated and characterized nascent intestinal Golgi intermediate-density lipoproteins (IDL, d 1.006-1.040 g/ml) and studied isotope incorporation into apoliproteins of Golgi VLDL from control and hypercholesterolemic rats. IDL were triacylglycerol-rich lipoproteins but contained more cholesteryl ester and protein than the corresponding Golgi VLDL fractions. IDL from hypercholesterolemic rats were enriched in cholesteryl esters to a greater extent than IDL from control rats. The apolipoprotein patterns of IDL fractions were the same as those of intestinal Golgi VLDL, consisting of apolipoproteins (apo) B-48, A-I and A-IV. Time-course isotope incorporation curves for apo A-I and A-IV in Golgi VLDL were similar, but they differed from curves for apo B-48. None of these curves was markedly altered in the hypercholesterolemic rat. We conclude that the major effect of increased dietary cholesterol on intestinal lipoprotein biosynthesis is to increase the percentage of cholesteryl esters in Golgi lipoproteins. Dietary cholesterol does not alter the apolipoprotein composition of Golgi lipoproteins, nor does it have a significant effect on the pattern of isotope incorporation into apolipoproteins of Golgi VLDL. The effect of cholesteryl ester enrichment on the subsequent metabolism of these particles in the circulation and the effect of these particles on hepatic lipoprotein production remain to be determined.  相似文献   

14.
A very short run time and small sample volumes in the separation of lipoproteins by preparative ultracentrifugation are needed for several investigations. Recently, a very fast sequential separation method was described that needs only 100 min for one run in a centrifugal field of 625 000 × g. We studied the influence of centrifugal fields of this dimension on lipoprotein separation and lipoprotein particle integrity using a Beckman OptimaTM TLX ultracentrifuge with a TLA-120.2 rotor. Rotor speed (120/90/60/30 · 103 rev./min) and run time (100 min/3 h/6.7 h/27 h) were selected in such a way that the product of centrifugal field and run time remained constant. The first conditions correspond to the very fast ultracentrifugation (VFU) procedure with a centrifugal field of 625 000 × g. Thirty different plasma samples covering a wide range of lipid and protein concentrations were separated in the course of two centrifugal runs at densities of 1.006 and 1.063 kg/l which yielded very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and the subnatant of low-density lipoproteins, including high-density lipoproteins (HDL) and concomitant sedimented plasma proteins. The major lipid components of the lipoproteins, triacylglycerols, free and esterified cholesterol, phospholipids and the apolipoproteins B and A-I, were estimated considering the masses of the tube contents after a slicing procedure. Measurements of lipids and proteins showed a very good recovery of better than 94% and 91%, respectively, and precision-within-series (coefficient of variation) of better than 4.2% and 6.5%, respectively. The effects of the rotor speed on the lipoprotein structure appeared to be weak. With increasing rotor speed, VLDL and LDL lipid constituents principally tended to decrease, whereas they increased in the subnatant of the LDL-run. The mean lipoprotein mass composition, considering the mass percentage of each measured particle constituent, did not show significant alterations. Total protein decreased in VLDL and in LDL and increased in the subnatant of the LDL-run. As checked by an enzyme-linked immunosorbent assay (ELISA) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein effects were due to nearly complete disappearence of contaminating plasma proteins, especially albumin as the major contamination of VLDL and LDL. The apolipoproteins (apo) B-100, A-I, E and C-I to C-III remained nearly unaffected. The main advantages of VFU were the very short run time (cumulative flotation time is 3.4 h) and the elimination of albumin without repeated runs. The procedure was suitable for the assessment of lipid and protein constituents in lipoproteins from very small plasma samples (500 μl).  相似文献   

15.
The plasma lipoproteins of estrogen-treated and untreated sexually immature hens have been compared with respect to their concentration in plasma, protein and lipid composition, particle size, and and apoprotein composition. Administration of diethylstilbestrol resulted in a 400-fold rise in the concentration of very low density lipoprotein (VLDL), a 70-fold rise in low density lipoprotein (LDL), and a marked reduction in high density lipoprotein (HDL) protein. It also resulted in the production of LDL and HDL which were enriched in triacylglycerol, while the proportion of cholesterol in all three lipoprotein fractions decreased. In contrast to the lipoproteins from untreated birds, lipoproteins of density less than 1.06 g/ml from estrogen-treated birds were not clearly separable into discrete VLDL and LDL fractions, but appeared to be a single ultracentrifugal class. The apoprotein composition of VLDL and LDL from untreated birds differed from each other; however, the apoprotein patterns of VLDL and LDL from estrogen-treated birds were indistinguishable: both contained a large amount of low molecular weight protein in addition to the high molecular weight component that predominates in the untreated state. The apoprotein composition of HDL was also markedly altered by estrogen administration: the 28,000 mol. wt. protein (apo A-I) decreased in amount from 65% to less than 5% of the total, while a low molecular weight (Mr = 14,000) protein and as yet poorly defined high molecular weight components became predominant. These observations indicate that the hyperlipidemia induced by estrogen administration is accompanied by marked alterations, both qualitative and quantitative, in the plasma lipoproteins.  相似文献   

16.
We have previously shown that plasma lipoproteins can be separated by analytical capillary isotachophoresis (ITP) according to their electrophoretic mobility in a defined buffer system. As in lipoprotein electrophoresis, HDL show the highest mobility followed by VLDL, IDL, and LDL. Chylomicrons migrate according to their net-charge between HDL and VLDL, because ITP has negligible molecular sieve effects. Three HDL subfractions were obtained which were designated fast-, intermediate-, and slow-migrating HDL. To further characterize these HDL subfractions, a newly developed free-solution ITP (FS-ITP)-system was used, that allows micro-preparative separation of human lipoproteins directly from whole plasma (B?ttcher, A. et al. 1998. Electrophoresis. 19: 1110-1116). The fractions obtained by FS-ITP were analyzed for their lipid and apolipoprotein composition and by two-dimensional nondenaturing polyacrylamide gradient gel electrophoresis (2D-GGE) with subsequent immunoblotting. fHDL are characterized by the highest proportion of esterified cholesterol of all three subfractions and are relatively enriched in LpA-I. Together with iHDL they contain the majority of plasma apoA-I, while sHDL contain the majority of plasma apoA-IV, apoD, apoE, and apoJ. Pre-beta-HDL were found in separate fractions together with triglyceride-rich fractions between sHDL and LDL. In summary, ITP can separate the bulk of HDL into lipoprotein subfractions, which differ in apolipoprotein composition and electrophoretic mobility. While analytical ITP permits rapid separation and quantitation for diagnostic purposes, FS-ITP can be used to obtain these lipoprotein subfractions on a preparative scale for functional analysis. As FS-ITP is much better suited for preparative purposes than gel electrophoresis, it represents an important novel tool for the functional analysis of lipoprotein subclasses.  相似文献   

17.
The laying hen represents a physiological model in which the mechanisms of action of estrogens on lipid transport can be evaluated. The plasma lipoproteins in the laying hen were subfractionated into discrete particle species by isopycnic density gradient ultracentrifugation and the physicochemical properties and apolipoprotein contents of individual subfractions evaluated. The qualitative and quantitative aspects of this estrogen-specific profile were then compared to those of the immature chicken. As observed earlier, estrogens induced dramatic elevation in very-low-density lipoproteins (VLDL) (up to 900 mg/dl). Indeed, triglyceride-rich lipoproteins with densities up to 1.035 g/ml, i.e. VLDL and their remnants, behaved as a continuum which displayed little variation in size (20.5-21 nm), electrophoretic mobility (beta-like) and apolipoprotein content; apo B-100 (540 kDa) predominated while apo A-I (27 kDa), apo VLDL-II (19 kDa) and an apo-C-like protein (13 kDa) were present as minor components. The typical high-density lipoproteins (HDL) in the immature chicken were replaced by a lipoprotein population whose physicochemical properties were quite distinct. Thus these particles were distributed as a single, asymmetric peak over the density range 1.030-1.158 g/ml, a wide interval which overlapped that of apo-B-rich particles at its lower limit. The rho 1.030-1.158 g/ml lipoproteins were present at concentrations (approximately equal to 200 mg/dl) some twofold to threefold lower than those of HDL in immature birds. Furthermore, they displayed physical and chemical properties in common with both low-density lipoproteins (LDL) and HDL and were LDL-like in exhibiting beta mobility but HDL-like in size (9-15 nm diameter). Their protein moiety was also HDL-like in its predominant content of apo A-I; small amounts of apo VLDL-II and the apo-C-like protein were also detected. Substantial amounts of lipid were found at rho greater than 1.195 g/ml: such substances are absent in the immature chicken and may reflect the presence of vitellogenins. The hyperestrogenic state in the laying hen is therefore associated with major modifications in lipoprotein and apolipoprotein profile. Such modifications may be of relevance to clinical disorders involving estrogen-induced hyperlipidemia.  相似文献   

18.
We have examined the capability of a previously developed compartmental model to explain the kinetics of radioiodinated apolipoprotein (apo) B-100 in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL) separated by density gradient ultracentrifugation after intravenous injection of radioiodinated VLDL into New Zealand white (NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Our model was developed primarily from kinetics in whole blood plasma of apoB-100 in particles with and without apoE after intravenous injection of large VLDL, total VLDL, IDL, and LDL. When the initial conditions for this model were assumed to be an intravenous injection of radiolabeled VLDL, the plasma VLDL and LDL simulations for NZW rabbits and the VLDL, IDL, and LDL simulations for WHHL rabbits were found to be inconsistent with the observed density gradient data. By adding a new pathway in the VLDL portion of the model for NZW rabbits and a new compartment in VLDL for WHHL rabbits, and by assuming some cross-contamination in the density gradient ultracentrifugal separations, it was possible to bring our model, which was based upon measurements of 125I-labeled apoB-100 in whole plasma, into conformity with the data obtained by density gradient ultracentrifugation. The relatively modest changes required in the model to fit the gradient ultracentrifugation data support the suitability of our approach to the kinetic analysis of the metabolism of apoB-100 in VLDL and its conversion to IDL and LDL based upon measurements of 125I-labeled apoB-100 in whole plasma after injection of radiolabeled VLDL, IDL, and LDL. Furthermore, the differences in kinetics observed by us between data from whole plasma and data from plasma submitted to ultracentrifugal separation from the same or similar animals highlight the fact that small variations that can occur in the separation of lipoprotein classes by buoyant density can lead to confusing results.  相似文献   

19.
Niacin and cholesterol: role in cardiovascular disease (review)   总被引:5,自引:0,他引:5  
Niacin has been widely used as a pharmacologic agent to regulate abnormalities in plasma lipid and lipoprotein metabolism and in the treatment of atherosclerotic cardiovascular disease. Although the use of niacin in the treatment of dyslipidemia has been reported as early as 1955, only recent studies have yielded an understanding about the cellular and molecular mechanism of action of niacin on lipid and lipoprotein metabolism. In brief, the beneficial effect of niacin to reduce triglycerides and apolipoprotein-B containing lipoproteins (e.g., VLDL and LDL) are mainly through: a) decreasing fatty acid mobilization from adipose tissue triglyceride stores, and b) inhibiting hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL particles. The mechanism of action of niacin to raise HDL is by decreasing the fractional catabolic rate of HDL-apo AI without affecting the synthetic rates. Additionally, niacin selectively increases the plasma levels of Lp-AI (HDL subfraction without apo AII), a cardioprotective subfraction of HDL in patients with low HDL. Using human hepatocytes (Hep G2 cells) as an in vitro model system, recent studies indicate that niacin selectively inhibits the uptake/removal of HDL-apo AI (but not HDL-cholesterol ester) by hepatocytes, thereby increasing the capacity of retained HDL-apo AI to augment cholesterol efflux through reverse cholesterol transport pathway. The studies discussed in this review provide evidence to extend the role of niacin as a lipid-lowering drug beyond its role as a vitamin.  相似文献   

20.
Apolipoprotein B has an obligatory role in the production of chylomicrons, VLDL, and LDL. Familial hypobetalipoproteinemia is a codominant disorder characterized by reduced levels of apo B containing lipoproteins in plasma. We have previously described mutations of the apo B gene in persons with hypobetalipoproteinemia that predict truncated forms of apo B designated apo B29 (1305 amino acid residues) and apo B39 (1799 residues). Apo B39 was present in the VLDL and LDL fractions of plasma, but apo B29 was not detected in the lipoprotein or infranatant fractions of plasma. Here we have investigated the regions of apo B necessary for apo B containing lipoprotein secretion by expression of constructs designed to express truncated forms of apo B. Apo B13 (583 residues), apo B17 (784 residues), apo B23 (1084 residues), apo B29 (1306 residues), and apo B41 (1880 residues) were transiently expressed in HepG2 cells, and apo B23 and apo B41 were stably expressed in McArdle 7777 cells. Lipoprotein (d less than 1.25 g/mL) and infranatant (d greater than 1.25 g/mL) fractions of conditioned medium were analyzed by immunoprecipitation and SDS-PAGE. The distribution between lipoprotein and infranatant fractions varied: apo B41 was found solely in the lipoprotein fraction; apo B29, apo B23, and apo B17 were present in both fractions, but with stepwise truncation, progressively more apo B was recovered in the infranatant; apo B13 was only in the infranatant. These results demonstrate that deletion from the carboxyl terminal of apo B41 results in a gradual loss of the ability of the truncated proteins to form buoyant lipoprotein particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号