首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spontaneous aggregation of glycosylated, desialated, oxidized and malondialdehyde modified low density lipoprotein (LDL) as well as LDL of coronary heart disease patients has been discovered using methods for determination of light transmission fluctuations in suspensions and gel filtration. At the same time; LDL of healthy donors failed to aggregate under conditions of cellular culture. On the other hand, human aortic cells from unaffected intima incubated with modified LDL, but not native LDL of healthy donors, showed a rise in esterified cholesterol levels. There was a strong correlation between the degree of LDL aggregation and intracellular cholesterol ester accumulation (r-0.86, p 0.001, n-21). Removal of aggregates by passing preparations through and 0.1 um filter significantly inhibited the accumulation of cholesterol esters. The obtained data point to the essential, if not decisive, role of LDL aggregation in the processes of lipid accumulation by intimal cells in vitro.  相似文献   

2.
Hypercholesterolemia induces increased transcytosis and accumulation of plasma lipoproteins in the arterial intima, where they interact with matrix proteins and become modified and reassembled lipoproteins. Chondroitin 6-sulfate-modified LDL (CS-mLDL) induces migration, proliferation, and lipid accumulation in human aortic smooth muscle cells (SMCs). To search for the mechanism(s) responsible for lipid accumulation, cultured SMC and macrophages were exposed to CS-mLDL, minimally modified LDL (mmLDL), and native LDL (as a control). Then the cellular uptake, degradation and expression of the LDL receptor (LDL-R) was determined using radioiodinated ligands, ACAT activity assay, fluorescence microscopy and RT-PCR. The uptake of CS-mLDL was 2-fold higher in SMC and 3-to 4-fold higher in macrophages as compared to LDL and mmLDL; the lysosomal degradation of CS-mLDL was slower in SMCs and considerably diminished in macrophages. Compared with LDL, CS-mLDL induced increased synthesis and accumulation of esterified cholesterol in SMCs (∼2-fold) and macrophages (∼10-fold) within an expanded acidic compartment. CS-mLDL and mmLDL down-regulate the gene expression of the LDL-R in the both cell types. Mechanisms of CS-mLDL-induced lipid accumulation in SMC and macrophages involve increased cellular uptake, and diminished cellular degradation that stimulates cholesterol ester synthesis and accumulation in cytoplasmic inclusions and in the lysosomal compartment in an undegraded form; modified lipoproteins induce down-regulation of LDL-R.  相似文献   

3.
Low density lipoproteins (LDL) isolated from the plasma of patients with angiographically demonstrable coronary heart disease (CHD) induced accumulation of triglycerides, free cholesterol, and cholesteryl esters in cultured macrophages, smooth muscle cells, and endothelial cells derived from uninvolved intima of human aorta, but not in skin fibroblasts or hepatoma cells. The sialic acid content of LDL from CHD patients was 40-75% lower than that from healthy donors. There was a negative correlation between LDL sialic acid content and the LDL-induced accumulation of total intracellular cholesterol. Neuraminidase treatment of LDL from normal healthy donors produced sialic acid-depleted LDL (Ds-LDL) which was able to stimulate intracellular lipid accumulation. Neuraminidase treatment of LDL from CHD patients further increased its capacity to induce intracellular lipid accumulation. Sialic acid-poor LDL isolated by affinity chromatography of LDL from CHD patients induced a 2- to 4-fold increase of free and esterified cholesterol in human intimal smooth muscle cells. Binding, uptake, and degradation of 125I-labeled Ds-LDL by macrophages and endothelial cells were 1.5- to 2-fold higher than for native LDL. Binding and uptake of Ds-LDL was inhibited 64-93% by the addition of 20-fold excess acetylated LDL (Ac-LDL); in the inverse experiment, the level of inhibition was 35-54%. These data indicate that a sialic acid-poor form of LDL isolated from CHD patients can interact with both native and scavenger LDL receptors. A sialic acid-poor form of LDL may be a naturally occurring ligand that interacts with the scavenger receptor(s) on macrophages and endothelial cells.  相似文献   

4.
Platelet-derived growth factor (PDGF) is secreted by several cells that participate in the process of atherogenesis, including arterial wall monocyte-derived macrophages. Macrophages in human and non-human primate lesions have recently been demonstrated to contain PDGF-B chain protein in situ. In developing lesions of atherosclerosis, macrophages take up and metabolize modified lipoproteins, leading to lipid accumulation and foam cell formation. Oxidatively modified low density lipoproteins (LDL) have been implicated in atherogenesis and have been demonstrated in atherosclerotic lesions. The effects of the uptake of various forms of modified LDL on PDGF gene expression, synthesis, and secretion in adherent cultures of human blood monocyte-derived macrophages were examined. LDL oxidized in a cell-free system in the presence of air and copper inhibited the constitutive expression of PDGF-B mRNA and secretion of PDGF in a dose-dependent fashion. Oxidatively modified LDL also attenuated lipopolysaccharide-induced PDGF-B mRNA expression. These changes were unrelated to the mechanism of lipid uptake and the degree of lipid loading and were detectable within 2 h of exposure to oxidized LDL. The degree of inhibition of both basal and lipopolysaccharide-induced PDGF-B-chain expression increased with the extent of LDL oxidation. Monocyte-derived macrophages exposed to acetylated LDL or LDL aggregates accumulated more cholesterol than cells treated with oxidized LDL, but PDGF expression was not consistently altered. Thus, uptake of a product or products of LDL oxidation modulates the expression and secretion of one of the principal macrophage-derived growth factors, PDGF. This modulation may influence chemotaxis and mitogenesis of smooth muscle cells locally in the artery wall during atherogenesis.  相似文献   

5.
In the present report we have examined expression of the gene encoding the inflammatory monokine TNF-alpha in murine peritoneal macrophages treated with different forms of low density lipoprotein (LDL). LDL modified by oxidation in vitro is unable to stimulate inflammatory gene expression in peritoneal macrophages. However, treatment of macrophage cultures with oxidized LDL for 6 h or more resulted in a concentration and time-dependent suppression of TNF-alpha mRNA expression induced in response to stimulation with either LPS or maleylated BSA. This suppression was maximal after 12 h of exposure to oxidized LDL and at a concentration of 100 to 200 micrograms LDL cholesterol/ml of culture medium. The suppressive effect was restricted to oxidatively modified LDL as treatment with native LDL or acetylated LDL did not affect TNF-alpha mRNA expression, despite the fact that both acetylated and oxidized LDL lead to intracellular lipid accumulation. The expression of maleyl albumin-stimulated TNF-alpha mRNA expression could be reproduced by lipid extracts of oxidized LDL provided to macrophages at the same cholesterol concentration as from the intact lipoprotein particle. Extracts from native LDL were ineffective. These results suggest that oxidized lipid accumulation in monocytes infiltrating the arterial wall may lead to the suppression of certain inflammatory functions which, in turn, may influence the development of mature atherosclerotic lesions.  相似文献   

6.
7.
Apart from its role as a risk factor in arteriosclerosis, plasma cholesterol is increasingly recognized to play a major role in the pathogenesis of Alzheimer's disease (AD). Moreover, alterations of intracellular cholesterol metabolism in neuronal and vascular cells are of considerable importance for the understanding of AD. Cellular cholesterol accumulation enhances the deposition of insoluble beta-amyloid peptides, which is considered a hallmark in the pathogenesis of AD. In order to test the hypothesis, whether exogenous beta-amyloid peptides (Abeta42, Abeta40) might contribute to cellular cholesterol accumulation by opsonization of lipoproteins, we compared the binding and uptake of native LDL, enzymatically modified LDL (E-LDL), copper oxidized LDL (Ox-LDL) and HDL as control, preincubated either in the absence or presence of Abeta42 or Abeta40, by human monocytes or monocyte-derived macrophages. Incubation of monocytes and macrophages with Abeta-lipoprotein-complexes lead to increased cellular free and esterified cholesterol when compared to non-opsonized lipoproteins, except for HDL. Furthermore, the cellular uptake of these complexes regulated Abeta-receptors such as FPRL-1 or LRP/CD91. In summary, our results suggest that Abeta42 and Abeta40 act as potent opsonins for LDL, E-LDL and Ox-LDL and enhance cellular cholesterol accumulation as well as Abeta-deposition in vessel wall macrophages.  相似文献   

8.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

9.
Thyroid hormones are important regulators of lipid metabolism. Polymorphonuclear leukocytes (PMN) are essential components of innate immune response. Our goal was to determine whether hypothyroidism affects lipid metabolism in PMN cells. Wistar rats were made hypothyroid by administrating 0.1 g/L 6-propyl-2-thiouracil (PTU) in drinking water during 30 days. Triacylglycerides (TG), cholesterol and phospholipids were determined in PMN and serum by conventional methods. The mRNA expression of LDL receptor (LDL-R), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoAR), sterol regulatory element binding protein 2 (SREBP-2), and diacylglycerol acyltransferase 2 (DGAT-2) were quantified by Real-Time PCR. Cellular neutral lipids were identified by Nile red staining. We found hypothyroidism decreases serum TG whereas it increases them in PMN. This result agrees with those observed in Nile red preparations, however DAGT-2 expression was not modified. Cholesterol synthesizing enzyme HMGCoAR mRNA and protein was reduced in PMN of hypothyroid rats. As expected, cholesterol content decreased in the cells although it increased in serum. Hypothyroidism also reduced relative contents of palmitic, stearic, and arachidonic acids, whereas increased the myristic, linoleic acids, and the unsaturation index in PMN. Thus, hypothyroidism modifies PMN lipid composition. These findings would emphasize the importance of new research to elucidate lipid-induced alterations in specific function(s) of PMN.  相似文献   

10.
Atherogenesis and inflammation are dependent on macrophage function. Signalling pathways are involved in the modulation of the classical low density lipopotein (LDL)-receptor and scavenger receptors activities, which are both expressed by macrophages. This study has evaluated the role of activation of the protein kinase A and C pathways in human macrophages on the metabolism of lipid carried by native, acetylated and oxidised LDL. We found that [3H]oleate incorporation into cholesteryl ester and triacylglycerol is increased by an analogue of cAMP, but strongly inhibited by treatment with phorbol ester (PMA) (100 nM, 6 h) in the presence of acLDL and oxLDL and, to a lesser extent, nLDL. The mechanisms underlying the effects of the phorbol ester were investigated further. The protein kinase C inhibitors, calphostin C and herbimycin A, prevented the PMA-mediated inhibition of cholesterol esterification. PMA also reduced [14C]acetate incorporation into newly synthesised lipids especially in the presence of nLDL, and reduced the uptake of cholesterol carried by modified LDL. Furthermore, the effects of PMA were not modified by inhibition of proteases activities, ruling out the hypothesis that CD163, a scavenger receptor which is shed by the cell surface in the presence of phorbol, is involved in the phorbol-induced reduction of cholesterol accumulation in macrophages in response to LDL. We conclude that binding of modified LDL to macrophages induces an appropriate pattern of scavenger receptor phosphorylation which, in turn, determines the optimal receptor internalisation process. PMA activates PKC pathways and prevents the optimal ligand-induced phosphorylation of the receptors, compromising the processes of degradation of modified LDL. The data also suggest that this mechanism may be related to the decreased uptake by activated macrophages of lipid carried by modified lipoproteins during the early phases of inflammation (284).  相似文献   

11.
We assessed the metabolism of low density lipoprotein (LDL) of human monocyte-derived macrophages under hypoxia. The specific binding and association of 125I-labeled LDL (125I-LDL) were not changed under hypoxia compared to normoxia. However, the degradation of 125I-LDL under hypoxia decreased to 60%. The rate of cholesterol esterification under hypoxia was 2-fold greater on incubation with LDL or 25-hydroxycholesterol. The cellular cholesteryl ester content was also greater under hypoxia on incubation with LDL. Secretion of apolipoprotein E into the medium was not altered under hypoxia, suggesting that apolipoprotein E independent cholesterol efflux may be reduced under hypoxia. Thus, hypoxia affects the intracellular metabolism of LDL, stimulates cholesterol esterification, and enhances cholesteryl ester accumulation in macrophages. Hypoxia is one of the important factors modifying the cellular lipid metabolism in arterial wall.  相似文献   

12.
The transformation of macrophages and smooth muscle cells into foam cells by modified low-density lipoproteins (LDL) is one of the key events of atherogenesis. Effects of free radicals have mainly been studied in LDL, and other than toxicity, data dealing with direct action of free radicals on cells are scarce. This study focused on the direct effects of free radicals on cholesterol metabolism of smooth muscle cells. A free radical generator, azobis-amidinopropane dihydrochloride, was used, and conditions for a standardized oxidative stress were set up in vascular smooth muscle cells. After free radical action, the cells presented an accumulation of cholesterol that appeared to be the result of: (i) an increase in cholesterol biosynthesis and esterification; (ii) a decrease in cell cholesteryl ester hydrolysis; and (iii) a reduced cholesterol efflux. All these parameters were opposed by antioxidants. In addition, oxidant stress induced an increased degradation of acetyl-LDL, whereas no change was noted for native LDL. From this data, it was concluded that cholesterol metabolism of vascular smooth muscle cells was markedly altered by in vitro treatment with free radicals, although cell viability was unaffected. The resulting disturbance in cholesterol metabolism favors accumulation of cholesterol and cholesteryl esters in vascular cells, and thus may contribute to the formation of smooth muscle foam cells.  相似文献   

13.
Much of the cholesterol that accumulates in atherosclerotic plaques is found within monocyte-macrophages transforming these cells into "foam cells." Native low density lipoprotein (LDL) does not cause foam cell formation. Treatment of LDL with cholesterol esterase converts LDL into cholesterol-rich liposomes having >90% cholesterol in unesterified form. Similar cholesterol-rich liposomes are found in early developing atherosclerotic plaques surrounding foam cells. We now show that cholesterol-rich liposomes produced from cholesterol esterase-treated LDL can cause human monocyte-macrophage foam cell formation inducing a 3-5-fold increase in macrophage cholesterol content of which >60% is esterified. Although cytochalasin D inhibited LDL liposome-induced macrophage cholesteryl ester accumulation, LDL liposomes did not enter macrophages by phagocytosis. Rather, the LDL liposomes induced and entered surface-connected compartments within the macrophages, a unique endocytic pathway in these cells that we call patocytosis. LDL liposome apoB rather than LDL liposome lipid mediated LDL liposome uptake by macrophages. This was shown by the findings that: 1) protease treatment of the LDL liposomes prevented macrophage cholesterol accumulation; 2) liposomes prepared from LDL lipid extracts did not cause macrophage cholesterol accumulation; and 3) purified apoB induced and accumulated within macrophage surface-connected compartments. Although apoB mediated the macrophage uptake of LDL liposomes, this uptake did not occur through LDL, LDL receptor-related protein, or scavenger receptors. Also, LDL liposome uptake was not sensitive to treatment of macrophages with trypsin or heparinase. Cholesterol esterase-mediated transformation of LDL into cholesterol-rich liposomes is an LDL modification that: 1) stimulates uptake of LDL cholesterol by apoB-dependent endocytosis into surface-connected compartments, and 2) causes human monocyte-macrophage foam cell formation.  相似文献   

14.
Loss of ABCG1 results in chronic pulmonary inflammation   总被引:1,自引:0,他引:1  
ABCG1, a member of the ATP-binding cassette transporter superfamily, is highly expressed in multiple cells of the lung. Loss of ABCG1 results in severe pulmonary lipidosis in mice, with massive deposition of cholesterol in both alveolar macrophages and type 2 cells and the accumulation of excessive surfactant phospholipids. These observations are consistent with ABCG1 controlling cellular sterol metabolism. Herein, we report on the progressive and chronic inflammatory process that accompanies the lipidosis in the lungs of Abcg1-/- mice. Compared with wild-type animals, the lungs of aged chow-fed mice deficient in ABCG1 show distinctive signs of inflammation that include macrophage accumulation, lymphocytic infiltration, hemorrhage, eosinophilic crystals, and elevated levels of numerous cytokines and cytokine receptors. Analysis of bronchoalveolar lavages obtained from Abcg1-/- mice revealed elevated numbers of foamy macrophages and leukocytes and the presence of multiple markers of inflammation including crystals of chitinase-3-like proteins. These data suggest that cholesterol and/or cholesterol metabolites that accumulate in Abcg1-/- lungs can trigger inflammatory signaling pathways. Consistent with this hypothesis, the expression of a number of cytokines was found to be significantly increased following increased cholesterol delivery to either primary peritoneal macrophages or Raw264.7 cells. Finally, cholesterol loading of primary mouse macrophages induced cytokine mRNAs to higher levels in Abcg1-/-, as compared with wild-type cells. These results demonstrate that ABCG1 plays critical roles in pulmonary homeostasis, balancing both lipid/cholesterol metabolism and inflammatory responses.  相似文献   

15.
Incubation of low density lipoprotein(s) (LDL) with either lipoprotein lipase or hepatic lipase led to modification of the core lipid composition of LDL. Both lipases modified LDL by substantially reducing core triglyceride content without producing marked differences in size, charge, or lipid peroxide content in comparison to native LDL. The triglyceride-depleted forms of LDL that result from treatment with these two enzymes were degraded at approximately twice the rate of native LDL by human monocyte-derived macrophages (HMDM). Lipase-modified LDL degradation was inhibited by chloroquine, suggesting lysosomal involvement in LDL cellular processing. The increased degradation by macrophages of the LDL modified by these lipases was accompanied by enhanced cholesterol esterification rates, as well as by an increase in cellular free and esterified cholesterol content. In a patient with hepatic triglyceride lipase deficiency, degradation of the triglyceride-rich LDL by HMDM was approximately half that of normal LDL. Following in vitro incubation of LDL from this patient with either lipoprotein or hepatic lipase, lipoprotein degradation increased to normal. Several lines of evidence indicate that LDL modified by both lipases were taken up by the LDL receptor and not by the scavenger receptor. 1) The degradation of lipase-modified LDL in nonphagocytic cells (human skin fibroblast and arterial smooth muscle cells) as well as in phagocytic cells (HMDM, J-774, HL-60, and U-937 cell lines) could be dissociated from that of acetylated LDL and was always higher than that of native LDL. A similar pattern was found for cellular cholesterol esterification and cholesterol mass. 2) LDL receptor-negative fibroblasts did not degrade lipase-modified LDL. 3) A monoclonal antibody to the LDL receptor inhibited macrophage degradation of the lipase-modified LDL. 4) Excess amounts of unlabeled LDL competed substantially with 125I-labeled lipase-modified LDL for degradation by both macrophages and fibroblasts. Thus, lipase-modified LDL can cause significant cholesterol accumulation in macrophages even though it is taken up by LDL and not by the scavenger receptor. This effect could possibly be related to the reduced triglyceride content in the core of LDL, which may alter presentation of the LDL receptor-binding domain of apolipoprotein B on the particle surface, thereby leading to increased recognition and cellular uptake via the LDL receptor pathway.  相似文献   

16.
LDL enriched with either saturated, monounsaturated, n-6 polyunsaturated, or n-3 polyunsaturated fatty acids were used to study the effects of dietary fatty acids on macrophage cholesteryl ester (CE) accumulation, physical state, hydrolysis, and cholesterol efflux. Incubation of THP-1 macrophages with acetylated LDL (AcLDL) from each of the four diet groups resulted in both CE and triglyceride (TG) accumulation, in addition to alterations of cellular CE, TG, and phospholipid fatty acyl compositions reflective of the individual LDLs. Incubation with monounsaturated LDL resulted in significantly higher total and CE accumulation when compared with the other groups. After TG depletion, intracellular anisotropic lipid droplets were visible in all four groups, with 71% of the cells incubated with monounsaturated AcLDL containing anisotropic lipid droplets, compared with 30% of cells incubated with n-3 AcLDL. These physical state differences translated into higher rates of both CE hydrolysis and cholesterol efflux in the n-3 group. These data suggest that monounsaturated fatty acids may enhance atherosclerosis by increasing both cholesterol delivery to macrophage foam cells and the percentage of anisotropic lipid droplets, while n-3 PUFAs decrease atherosclerosis by creating more fluid cellular CE droplets that accelerate the rate of CE hydrolysis and the efflux of cholesterol from the cell.  相似文献   

17.
Chronic hyperglycemia in diabetes is associated with profound changes in lipid and lipoprotein metabolism, with resultant alterations in particle distribution within lipoprotein classes. In the present study, an attempt has been made to explore the antihyperlipidemic effect of fisetin in streptozotocin‐induced experimental diabetes in rats. Upon fisetin treatment to diabetic rats, the levels of blood glucose were significantly reduced with an improvement in plasma insulin. The increased levels of lipid contents in serum, hepatic, and renal tissues observed in diabetic rats were normalized upon fisetin administration. Also, the decreased levels of high‐density lipoprotein cholesterol, and increased levels of low‐density lipoprotein (LDL) and very LDL (VLDL) cholesterol in serum of diabetic rats were normalized. Oil Red O staining established a large number of intracellular lipid droplets accumulation in the diabetic rats. Fisetin treatment exacerbated the degree of lipid accumulation. The results of the present study exemplify the antihyperlipidemic property of the fisetin.  相似文献   

18.
Oxidized low density lipoprotein (LDL) has been found to exhibit numerous potentially atherogenic properties, including transformation of macrophages to foam cells. It is believed that high density lipoprotein (HDL) protects against atherosclerosis by removing excess cholesterol from cells of the artery wall, thereby retarding lipid accumulation by macrophages. In the present study, the relative rates of HDL-mediated cholesterol efflux were measured in murine resident peritoneal macrophages that had been loaded with acetylated LDL or oxidized LDL. Total cholesterol content of macrophages incubated for 24 h with either oxidized LDL or acetylated LDL was increased by 3-fold. However, there was no release of cholesterol to HDL from cells loaded with oxidized LDL under conditions in which cells loaded with acetylated LDL released about one-third of their total cholesterol to HDL. Even mild degrees of oxidation were associated with impairment of cholesterol efflux. Macrophages incubated with vortex-aggregated LDL also displayed impaired cholesterol efflux, but aggregation could not account for the entire effect of oxidized LDL. Resistance of apolipoprotein B (apoB) in oxidized LDL to lysosomal hydrolases and inactivation of hydrolases by aldehydes in oxidized LDL were also implicated. The subcellular distribution of cholesterol in oxidized LDL-loaded cells and acetylated LDL-loaded cells was investigated by density gradient fractionation, and this indicated that cholesterol derived from oxidized LDL accumulates within lysosomes. Thus impairment of cholesterol efflux in oxidized LDL-loaded macrophages appears to be due to lysosomal accumulation of oxidized LDL rather than to impaired transport of cholesterol from a cytosolic compartment to the plasma membrane.  相似文献   

19.
20.
Changes in the contents of 36 mRNAs species related to lipid turnover, inflammation, metabolism and the action of sex hormones in samples of aortal intima along the “intact tissue — lesions of type I — lesions of type II — lesions of type Va” sequence were analyzed using quantitative PCR. The expression of several mRNAs coding for components of the vesicular transfer and lipid turnover machinery was found to be resistant to atherogenesis or even decline in the course of atherogenesis. Decrease in expression was also recorded for steroid sulfatase, androgen receptor, and low density lipoprotein receptor mRNAs. However, the contents of the majority of other mRNA species increased gradually during disease progression. The earliest changes found as early as in lesions of type I were characteristic for estrogen sulfotransferase, apolipoprotein E, scavenger receptor SR-BI, collagen COL1A2, as well as chemokine CCL18 mRNAs. The contents of several mRNAs in intact tissue and atherosclerotic injuries had gender differences. Additionally, responses of two mRNAs, for aromatase and sterol regulatory element binding protein 2, to atherosclerotic lesion were also sex-differentiated. The contents of the majority of analyzed mRNAs in peripheral blood monocyte-derived macrophages were higher than in intact aorta. The correlations found in atherosclerotic lesions between mRNA species that predominant in macrophages and those expressed at comparable levels in macrophages and intact aorta or mainly in aorta suggest that the observed rise in the content of the majority of mRNAs during atherogenesis is determined by increase in expression in resident cells. The data suggest that the revealed absence of homeostatic regulation of expression of a number of genes associated with vesicular transfer and lipid turnover can serve as one of the reasons for lysosomal function insufficiency that leads to foam cell formation in atheroma. The observed sex differences in expression of a number of mRNAs suggest that estrogens in women perform their atheroprotective effects starting with predisposition to the disease and finishing with advanced stages of the pathologic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号