首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaucheria (Xanthophyceae) exhibited cruciform polarotropism when they were grown under polarized white or blue light for several days. The coexistence of two groups of branches growing perpendicular and parallel to the electric vector (E-vector) resulted in cruciform polarotropic orientation. Such polarotropic bending was, however, not detected within 24 hr. As the fluence rate of polarized white or blue light increased, parallel orientation to the E-vector became dominant. Polarized red light produced exclusively perpendicular polarotropism. This shift in pattern was much obvious in V. terrestris sensu G?tz than V. sessllis and V. dichotoma. Since the photoperception is restricted to the tip of the apical dome and since this region receives maximum photons when the E-vector is at a right angle to the cell axis, Vaucheria becomes oriented normal to the E-vector as far as the fluence rate is optimum. The direction of growth is expected to change into parallel to the E-vector when the fluence rate is supraoptimum. The perpendicular (normal) and parallel polarotropism of Vaucheria, thus, correspond to positive and negative phototropism, respectively. Orientation of photoreceptor molecules is suggested to be predominantly parallel to the surface of the apical dome. Received 14 June 1999/ Accepted in revised form 19 November 1999  相似文献   

2.
The light-saturated rate of photosynthesis in blue light was 50-100% higher than that in red light for young sporophytes of Laminaria digitata (Huds.) Lamour., although photosynthetic rates were slightly higher in red than in blue light at low irradiances. Short exposures to low irradiances (e.g. 2 min at 20 μmol · m?2· s?1) of blue light also stimulated the subsequent photosynthesis of Laminaria sporophytes in saturating irradiances of red light but had little effect on photosynthesis in low irradiances of red light. The full stimulatory effect of short exposures to blue light was observed within 5 min of the blue treatment and persisted for at least 15 min in red light or in darkness. Thereafter, the effect began to decline, but some stimulation was still detectable 45 min after the blue treatment. The degree of stimulation was proportional to the logarithm of the photon exposure to blue light over the range 0.15-2.4 mmol · m?2, and the effectiveness of an exposure to 0.6 mmol · m?2at different wavelengths was high at 402-475 nm (with a peak at 460-475 nm) but declined sharply at 475-497 nm and was minimal at 544-701 nm. Blue light appears, therefore, to exert a direct effect on the dark reaction of photosynthesis in brown algae, possibly by activating carbon-fixing enzymes or by stimulating the uptake or transport of inorganic carbon in the plants.  相似文献   

3.
G. I. Jenkins  D. J. Cove 《Planta》1983,159(5):432-438
The phototropic and polarotropic responses of primary chloronemata grown from germinated minated spores of three mutant strains of the moss, Physcomitrella patens, have been studied and compared with those of the wild-type. The mutants and wild-type show the same qualitative tropic responses but differ with respect to the light conditions under which they are expressed. In both the wild-type and mutants the responses are controlled by phytochrome. In monochromatic red light, at low fluence rates, wild-type primary chloronemata grow positively phototropically in unidirectional light or perpendicular to the electrical vector (E) in polarised light; at high fluence rates growth in unidirectional light is lateral to the incident light or, in polarised light, parallel to E. The mutants, however, show only the lateral phototropic or parallel polarotropic responses at all fluence rates of red light tested. In far-red light, the wild-type primary chloronemata adopt a positive phototropic or a perpendicular polarotropic response; the mutants show the same responses but in a lower percentage of filaments. These results and those at other wavelengths indicate either that the mutants are impaired in their ability to adopt the positive phototropic and perpendicular polarotropic responses or that in the mutants the transition between the “low light” (positive phototropic-perpendicular polarotropic) and the “high light” (lateral phototropic-parallel polarotropic) responses is shifted to a lower photon fluence rate. Possible explanations of this phenotypic difference are discussed.  相似文献   

4.
The polarotropic response in protonemata of the fern Adiantumis regulated by phytochrome (Kadota et al. 1984); PR and PFRhave been shown to be dichroically oriented parallel and normalto the cell surface, respectively (Kadota et al. 1982). Thischange in the dichroic orientation of phytochrome during photoconversionwas analyzed by a newly-built, polarization plane-rotatabledouble laser flash irradiator. A polarotropic response was effectivelyinduced with a flash of polarized red (640 nm) light (6xl0–7s) having the vibration plane of the electrical vector parallelto the protonemal cell axis. When a flash of polarized far-red(710 nm) light (6xl0–7s) was given 30 sec after the redflash, the red flash-induced response was reversed by a far-redflash vibrating normal to the cell axis but not by one vibratingparallel. However, when given 2 µs or 2 ms after the redflash, the polarotropic response was not reversed by a polarizedfar-red flash vibrating normal to the cell axis but was reversedby a parallel-vibrating flash. These results suggest that theorientation of phototransformation intermediates existing 2µs or 2 ms after a red flash is still parallel to thecell surface, and that the change in the orientation of phytochromemolecules occurs between 2 ms and 30 s after the red flash. (Received February 3, 1986; Accepted April 23, 1986)  相似文献   

5.
In saturating irradiances of red light, photosynthesis of Laminaria saccharina (L.) Lamouroux was stimulated by low irradiances of continuous blue light only when the supply of dissolved inorganic carbon (DIC) was limiting. The degree of this stimulation was inversely proportional to the logarithm of the concentration of free CO2, whether this was adjusted by varying the total DIC or the pH at a given DIC concentration. The final pH reached in a closed system was higher in blue light than in red light. Both acetazolamide and ethoxyzolamide suppressed the responses to blue light almost completely, but reduced photosynthesis in red light by only 30%. Buffering the pH of the seawater also suppressed the stimulation of photosynthesis by blue light without affecting the photosynthetic rate in red light. The transient stimulation of O2 evolution by a blue light pulse was not accompanied by a corresponding increase in CO2 consumption. These observations could be explained if, in analogy to the mechanism proposed for Ectocarpus (Schmid, Mills & Dring 1996, Plant Cell and Environment 19,373–382, this issue, accompanying paper), photosynthesis was supported by a blue-light-activated release of CO2 from an internal store. We suggest that the store is located in the vacuoles of the cortical tissue of the blades. The main photosynthetic tissue, however, is in the overlying meristoderm, and blue-light-activated mobilization of the store could stimulate O2 evolution only if periplasmic carbonic anhydrase was available to facilitate CO2 uptake from the cortex.  相似文献   

6.
The actions of red and blue light in the photomovement of chloroplastsand the polarotropic response were studied in the protonemataof the homosporous ferns Pteris vittata L. and Adiantum capillus-venerisL. In Pteris, polarotropism could be induced with blue lightbut not with red light, while both colors of light were effectivein Adiantum protonemata. The photomovement of chloroplasts inthe two species studied by both polarized light and microbeamirradiation, also revealed similar responses to red and bluelight as the polarotropism; i.e. both colors of light were effectivein Adiantum but only blue light was active in Pteris. The resultsin Adiantum were consistent with previous results, which ledto the conclusion that both phytochrome and a blue light-absorbingpigment are involved in the two responses (Kadota et al. 1982,1984, Hayami et al. 1986, Yatsuhashi et al. 1985). By contrast,phytochrome is not involved in either polarotropism or chloroplastmovement in Pteris. Since the phytochrome system is evidentlyactive in every other photoresponses so far investigated inPteris as well as in Adiantum, the present study suggests thata phytochrome system specific to polarotropism and to photomovementof chloroplasts is absent in Pteris. Discussions are presentedon the possible involvement of two phytochrome populations ina fern gametophyte cell and on the possible lack of dichroicphytochrome in Pteris. (Received October 7, 1988; Accepted March 8, 1989)  相似文献   

7.
Experiments were performed to determine the quantitative relation existing between action potential and resting potential of the lobster giant axon. Resting potential changes were induced by either increasing the external potassium concentration or by reducing the external calcium concentration. For either treatment the action potential amplitude is proportional to the logarithm of the resting potential minus a constant. This constant is equivalent to the minimum resting potential at which a propagated spike is possible, and is larger for depolarization in low calcium than in high potassium. Thus the change in action potential per unit change in resting potential is greater in low external calcium than in high external potassium. Analog computer solutions to the Hodgkin-Huxley equations for squid axon membrane potentials show that, if the initial conditions are properly specified, the action potential is proportional to the logarithm of the potassium potential minus a constant. The experimental results and the analog computations suggest that reducing external calcium produces changes in the invertebrate axon that cannot be accounted for solely on the basis of alterations in the potassium potential.  相似文献   

8.
The light-growth response of the Phycomyces sporangiophore is a transient change of elongation rate in response to changes in ambient blue-light intensity. The white-noise method of nonlinear system identification (Wiener-Lee-Schetzen theory) has been applied to this response, and the results have been interpreted by system analysis methods in the frequency domain. Experiments were performed on the Phycomyces tracking machine. Gaussian white-noise stimulus patterns were applied to the logarithm of the light intensity. The log-mean intensity of the broadband blue illumination was 0.1 W m-2 and the standard deviation of the Gaussian white-noise was 0.58 decades. The results, in the form of temporal functions called Wiener kernels, represent the input-output relation of the light-growth response system. The transfer function, which was obtained as the Fourier transform of the first-order kernel, was analyzed in the frequency domain in terms of a dynamic model that consisted of a first-order high-pass filter, two secondorder low-pass filters, a delay element, and a gain factor. Parameters in the model (cutoff frequencies, damping coefficients, latency, and gain constant) were evaluated by nonlinear least-squares methods applied to the complex-valued transfer function. Analysis of the second-order kernel in the frequency domain suggests that the residual nonlinearity of the system lies close to the input.  相似文献   

9.
In young Acetabularia mediterranea Lamouroux (=A. acetabulum (L.) Silva) the formation of the lateral hair whorls can be induced by a short pulse of blue light after continuous red preillumination. In this paper we describe the experimental conditions for optimum response and the properties of the action spectrum. The probit of the cells which eventually form hair whorls is linearly correlated to the logarithm of the incident quanta of blue light. Parallel fluence-response curves for all wavelengths indicate the involvement of only one photoreceptor pigment. The action spectrum shows no effectiveness of wavelengths above 520 nm, a high action peak at 470 nm and two lower ones at 425 and 370 nm, and is in accordance with those of cryptochrome-like photoreceptors.  相似文献   

10.
The elongation of etiolated Avena mesocotyls is inhibited by red light (660 mμ). Immediately after exposing mesocotyl sections to varying doses of red light the ensuing concentrations of phytochrome in the far-red absorbing form (P730) were measured. The extent of mesocotyl inhibition observed 5 days later is proportional to the logarithm of P730 concentration in mesocotyl tissue at the time of red light exposure.

The inhibition of mesocotyl growth by red light can be reversed partially by subsequent exposure to far-red light (730 mμ). Increasing doses of far-red light result in decreasing concentrations of P730 as compared with the original P730 level due to the preceding red light exposure. The reduced mesocotyl inhibition of seedings which had been exposed to red and far-red light is proportional to the logarithm of P730 concentration remaining in the tissue at the end of the two light exposures.

This indicates that the same correlation exists between P730 concentration and growth response whether the seedlings had been exposed to red light only or to red followed by far-red light.

  相似文献   

11.
M T Record 《Biopolymers》1967,5(10):975-992
An approximate analytical expression for the electrostatic free energy of a polynucleo-tide in any of its possible ordered or random conformations is derived by integration of the screened-Coulomb potential energy function over all charge pairs in the structure. The electrostatic free energy of any form is found to be a linear function of the logarithm of the monovalent counterion concentration, in the range of low salt concentrations. Hence the electrostatic free energy difference between ordered and disordered forms in a polynucleotide structural transition is a linear function of the logarithm of the monovalent counterion concentration. A free energy balance applied to a two-state model for the transition then yields a linear dependence of the transition temperature Tm upon the logarithm of the counterion concentration. Calculation of the quantity dTm/d log M, where M is the monovalent counterion concentration, shows it to be a characteristic constant for a given transition, with a magnitude and sign proportional to the charge density difference between the ordered and disordered forms. Use of any one of several alternate, simple assumptions yields predicted dTm/d log M values in good agreement with experimental data for various polynucleotide transitions.  相似文献   

12.
Ursula Schael  H. Clauss 《Planta》1967,78(2):98-114
Zusammenfassung Die Photosynthese-Rate von Acetabularia mediterranea stellt sich in blauer Strahlung (350–500 nm) auf ein bestimmtes Niveau ein, in roter Strahlung (600–700 nm) fällt sie dagegen innerhalb von 2–3 Wochen bis ungefähr auf den Kompensationspunkt ab (Abb. 1). Der Photosyntheseapparat wird jedoch durch Rotlicht nicht irreversibel geschädigt, denn nach Bestrahlung mit Blaulicht steigt die Photosynthese-Rate in ca. 3 Tagen wieder auf den Ausgangswert an (Abb. 5). Dem Anstieg geht eine lag-Phase von mehreren Stunden voraus (Abb. 10). Photosynthese kann auch induziert werden, wenn die Bestrahlung mit Rotlicht kurzfristig täglich durch Blaulicht unterbrochen wird. Die erreichte Photosynthese-Rate hängt von der täglichen Blaulichtmenge ab und ist wahrscheinlich proportional dem Logarithmus der Blaulichtmenge.Die Wirkung roter und blauer Strahlung und zusätzlicher blauer Strahlung zum Rotlicht auf das Zellwachstum und die Substanzproduktion läßt sich zwanglos durch den Einfluß der Strahlung auf die Photosynthese-Rate der Zelle erklären.
The influence of red light and blue light on the photosynthetic activity of Acetabularia mediterranea
Summary In blue light (350–500 nm) the rate of photosynthesis (oxygen evolution) of Acetabularia is almost constant after a short period of transition (Fig. 1). In red light (600–700 nm), however, it decreases within 2–3 weeks almost to zero (compensation point). The photosynthetic apparatus is not damaged irreversibly by red light, because transfering the cell from continuous red light (2 weeks) to continous blue light results in an increase of the rate of photosynthesis within 3 days up to the level in blue light (Fig. 5). Photosynthesis can also be stimulated if continuous red light is interrupted daily by short breaks of blue light. The rate of photosynthesis at the end of the induction period depends upon the amount of blue light per day (Fig. 5 and 6) and is probably proportional to the logarithm of this amount.Cell growth (Figs. 2, 7, 8) and formation of dry matter (Figs. 3, 9) in continuous red light, in blue light and in continuous red light supplemented by blue light is controlled by the rate of photosynthesis under these light condition.
  相似文献   

13.
Prunus persica plants were grown under prolonged exposure to different light treatments to determine the interaction between the blue light (BL) receptor and phytochrome and/or an independent BL response in the photoregulation of shoot and leaf development. Different light conditions were established in growth chambers by changing both the state of phytochrome and the BL photon flux density (PFD) at constant photosynthetically active radiation (PAR). Furthermore, to evaluate the independent action of the BL photoreceptor, increasing amounts of BL photons were added to the light emitted by low-pressure sodium (LPS) lamps without altering irradiance and phytochrome photoequilibrium. Applying the principle of equivalent light action, the observed blue inhibition of shoot elongation, leaf expansion and thickness were clearly related to a specific BL receptor because the state of phytochrome for each treatment was nearly identical. Increasing amounts of blue photons to light emitted from LPS lamps decreased shoot elongation, whereas leaf expansion was negatively affected only at the highest blue level, suggesting a specific fluence dependence response to BL for each organ and tissue. The BL effect was evident in reducing the thickness of all the leaf tissues except for the upper epidermis, which became thicker. This could be the result of an adaptation to protect the underlying photosynthetic apparatus. Other morphological and anatomical responses to the action of the BL receptor were greatly altered when the state of phytochrome changed in the plant tissues. Received: 9 February 1999 / Accepted: 21 July 1999  相似文献   

14.
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.Abbreviations HIR high irradiance response - FR far-red - R red - WT wild type  相似文献   

15.
Ceratium fusus (Ehrenb.) Dujardin was exposed to light of different wavelengths and photon flux densities (PFDs) to examine their effects on mechanically stimulable bioluminescence (MSL). Photoinhibition of MSL was proportional to the logarithm of PFD. Exposure to I μmol photons·m?2s?1 of broadband blue light (ca. 400–500 nm) produced near-complete photoinhibition (≥90% reduction in MSL) with a threshold at ca. 0.01 μmol photons·m?2·s?1. The threshold of photoinhibition was ca. an order of magnitude greater for both broadband green (ca. 500–580 nm) and red light (ca. 660–700 nm). Exposure to narrow spectral bands (ca. 10 nm half bandwidth) from 400 and 700 nm at a PFD of 0.1 μmol photons·m?2·s?1 produced a maximal response of photoinhibition in the blue wavelengths (peak ca. 490 nm). A photoinhibition response (≥ 10%) in the green (ca. 500–540 nm) and red wavelengths (ca. 680 nm) occurred only at higher PFDs (1 and 10 μmol photons·m?2·s?1). The spectral response is similar to that reported for Gonyaulax polyedra Stein and Pyrocystis lunula Schütt and unlike that of Alexandrium tamarense (Lebour) Balech et Tangen. The dinoflagellate's own bioluminescence is two orders of magnitude too low to result in self-photoinhibition. The quantitative relationships developed in the laboratory predict photoinhibition of bioluminescence in populations of C. fusus in the North Atlantic Ocean.  相似文献   

16.
Regulation of Transpiration in Avena. Responses to Red and Blue Light Steps   总被引:3,自引:0,他引:3  
The transpiration responses of primary Arena leaves to red and blue light steps were investigated. The response to a red light step was a so-called slow response (with a rise time of about 8 min). The response to a blue light step consisted of both a slow, and a rapid response (with a rise time of about 2 min). CO2-free air outside the leaf eliminated only the slow response, i.e. in CO2-free ait the plant responded to blue light steps but not to red ones. A short exposure of red light prior to a blue light step enhanced the rapid response. The same enhancement of the rapid response could be achieved by means of a temporary pretreatment with CO2-free air. The magnitude of the rapid response was dependent on the blue light irradiance and no threshold effects could be detected. — The experimental results are discussed by means of a model, based on stomatal regulation by, ion transport between the subsidiary cells and the guard cells. It is suggested that the slow transpiration response is due to CO2-regulation of the stomatal aperture and that the rapid response reflect a CO2-independent blue light sensitive process, which acts directly on the ion transport through the subsidiary and guard cell membranes.  相似文献   

17.
The kinetics of induction of heat stability of cytoplasmic proteins and lipoproteins by auxin (2,4,-D) were determined for basal sections of soybean hypocotyl. Maximum heat stabilization occurred after 4 h of tissue incubation with 10-5M 2,4-D. The effect was less pronounced or absent with longer incubations. Membrane fractions sedimenting between 10,000 and 100,000 g and proteins of the 100,000 g supernatant were most affected. The auxin-induced protein aggregation response varied among experiments. With many tissue lots, the response was small or absent even though the tissue responded to the auxin uniformly by increased growth. The magnitude of response was proportional to the logarithm of auxin concentration but with low 2,4-D the portion of the homogenate protein coagulated by heat was increased and with supraoptimal concentrations it was decreased relative to the control. The smallest auxin-induced change in heat coagulability was observed at the auxin concentration nearest the optimum for growth. No direct correlation was found between the auxin-induced protein and lipo-protein aggregation phenomenon and total protein, chloroform-extractable lipid, residual lipid, growth or tissue deformability. Total sulfhydryl equivalent of the homogenates, however, did correlate with auxin effects on aggregation. This result, plus experiments where homogenates were exposed to oxidizing or reducing conditions, suggests that heat stabilization and associated protein aggregation phenomena are related to conversion of protein sulfhydryl to intramolecular disulfide bonds. No significance is attached to heat stabilization of cytoplasmic proteins as a requisite of auxin-induced growth.  相似文献   

18.
Light-adapted sporangiophores of the fungus Phycomyces respond to sudden darkening by a temporary decrease in the rate of elongation, after a latent period of several minutes. The reaction time of this "dark growth" response is compound like that of the "light growth" response. It is, moreover, shorter the more intense the previous illumination. The rate of dark adaptation following adaptation to a very large range of light intensities is found to be proportional to the logarithm of the preceding light intensity. It is shown that a constant amount of dark adaptation takes place before the response occurs. On the assumption that changes in the rate of growth reflect changes in the concentration of a substance which at constant light intensity is in equilibrium with a light-sensitive material, possible equations for such a photostationary state are examined. The most reasonable formulation requires that the partial velocity of the "light" reaction be taken proportional to log I instead of to I directly.  相似文献   

19.
Gametophytes of the fern Pteridium aquilinum were incubated 3 days in red light and then transferred to white light. The sequence of events occurring after the transfer was as follows: a swelling of the apical region within 1 hr; a reduction in cell elongation after 5 hr; a series of one-dimensional cell divisions between 10-25 hr; and the initiation of two-dimensional gametophytes after 25-50 hr. The percentage of two-dimensional gametophytes was proportional to the logarithm of the intensity of white light. The rate of elongation after 5 hr was inversely proportional to the logarithm of the intensity. The rates of cell divisions for one- and two-dimensional gametophytes were proportional to intensity up to 240 and 120 ft-c, respectively.  相似文献   

20.
G. I. Jenkins  D. J. Cove 《Planta》1983,158(4):357-364
Primary chloronemata growing from germinated spores of the moss Physcomitrella patens adopt one of two preferred polarotropic orientations depending on the wavelength and photon fluence rate of monochromatic light. Growth is mainly parallel to the electrical vector of plane polarised light in blue light and higher fluence rates of red light, and perpendicular to the electrical vector in the green and far-red regions of the spectrum and in low fluence rates of red light. The transition between the two polarotropic orientations, at wavelengths where it can be observed, usually occurs over a narrow range of fluence rates, and at this point the filaments do not grow randomly but tend to adopt in approximately equal numbers one of the preferred directions of growth. The primary chloronemata are positively phototropic in far-red light and in red light of low fluence rates, but tend to grow at right angles to the incident light in high fluence rates of red light. Simultaneous illumination with a high fluence rate of red light and a low fluence rate of far-red light causes a marked increase in the percentage of filaments growing towards the red light source at the expense of those growing at right angles to it, supporting the hypothesis that in red and far-red light, at least, the responses are controlled by the photoequilibrium of a phytochrome pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号