首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes metabolizing xenobiotics in spontaneous tumors in mice   总被引:2,自引:0,他引:2  
The microsomal monooxygenase activity in spontaneous mouse hepatomas has been studied. The cytochrome P-450 level in hepatomas was shown to be 2 times as low as that in the liver. The reduction of the cytochrome P-450 content in the tumour was accompanied by a decrease in the activity of benz(a)pyrene hydroxylase, amino-pyrene-N-demethylase and p-nitroanisole-O-demethylase. However, 7-ethoxycoumarin-O-deethylase activity in hepatomas was much higher than in the liver both estimated as mg of the microsomal protein and nmol of cytochrome P-450. The cytochrome b5 content in the hepatomas was comparable with its level in the liver. A more elevated content of NADPH-cytochrome c reductase and microsomal epoxide hydrolase activity was found in the hepatomas. The results obtained provide evidence of different oxidation effects regarding some substrates in the liver and hepatomas. The ratio of cytochrome P-450 isoforms is likely to change in the hepatomas in contrast with that in the liver.  相似文献   

2.
Debromination of 1,2-dibromoethane (DBE) by a rabbit liver microsomal preparation and a reconstituted cytochrome P-450 enzyme system was investigated. The reaction was performed in our newly constructed reaction vessel, in which a bromide electrode was installed. During the reaction, the liberated bromide ion was continuously measured by the bromide electrode, and the amount was recorded. In the microsomal preparation, the DBE-debromination rate per nmol cytochrome P-450 was enhanced by phenobarbital-pretreatment of rabbits compared with the untreated microsomes, whereas it was diminished by 3-methylcholanthrene-pretreatment. The debromination reaction was reconstituted in a purified enzyme system containing phenobarbital-inducible rabbit liver microsomal cytochrome P-450 (P-450PB), NADPH-cytochrome P-450 reductase, and NADPH. The optimum conditions required the presence of dilauroylphosphatidylcholine and cytochrome b5. Cytochrome b5 was found not to be an obligatory component for the DBE-debromination in the reconstituted system, but it stimulated the activity about 3.4-fold. Preincubation of the reconstituted mixture with guinea pig anti-cytochrome P-450PB antiserum markedly inhibited the debromination reaction.  相似文献   

3.
The interaction of highly purified liver microsomal cytochrome P-450 from phenobarbital-induced rabbits and cytochrome b5 has been investigated by the difference and second derivative difference spectroscopy. The addition of cytochrome b5 to cytochrome P-450 results in transition of cytochrome P-450 heme iron from low to high spin state. The interaction is accompanied by the changes in the second derivative spectrum of cytochrome P-450, which point to the participation of tryptophanyl residues in this process. The hydrophilic fragment of cytochrome b5 is unable to form a complex with cytochrome P-450 as judged by the absence of the difference spectrum and any changes in the second derivative UV-spectrum of cytochrome P-450. The evidence obtained indicates that the hydrophobic tail of the cytochrome b5 molecule responsible for its binding to membrane is also indispensable for forming a functional cytochrome P-450-cytochrome b5 complex.  相似文献   

4.
Changes in the metabolic activity of 7-ethoxyresorufin in rat liver microsomes containing different amounts of cytochrome P-450 induced by 3-methylcholanthrene and other polycyclic hydrocarbons (P-450c) were studied. Using antibodies to cytochrome P-450c for the determination of the cytochrome P-450c content and its metabolic role, it was demonstrated that 7-ethoxyresorufin O-deethylation by the liver microsomal monooxygenase system is catalyzed exclusively by cytochrome P-450c. The rate of the substrate metabolism is correlated with the cytochrome P-450c content in microsomal membranes; the cytochrome P-450c activity does not depend on the cytochrome P-450c/NADPH-cytochrome P-450 reductase ratio. The experimental results suggest that the level of 7-ethoxyresorufin metabolism in liver microsomes can be regarded as a measure of the cytochrome P-450c content, whose function is associated with the stimulation of potential carcinogenic and toxic substances.  相似文献   

5.
Hydroxylation of dimethylaniline in rabbit liver microsomes is accompanied by inactivation of cytochrome P-450 and the formation of products inhibiting the catalytic activity of non-inactivated cytochrome P-450. Other enzymes and electron carriers of microsomal membrane (cytochrome b5, NADH-ferricyanide reductase, NADPH-cytochrome c and NADPH-cytochrome P-450 reductases) as well as glucose-6-phosphatase were not inactivated in the course of the monooxygenase reactions. Phospholipids and microsomal membrane proteins were also unaffected thereby. Consequently, the changes in the microsomal membrane during cytochrome P-450 dependent monooxygenase system functioning are confined to the inactivation of cytochrome P-450.  相似文献   

6.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

7.
Induction of perfluorodecalin (PFD) of the liver microsomal system of metabolism of xenobiotics has been studied and compared with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that PFD increases the content of cytochrome P-450, NADPH-cytochrome c reductase activity. Like PB, PFD induces the activities of benzphetamine-N-demethylase, aldrine-epoxidase, 16 beta-androstendion-hydroxylase. Using specific antibodies against cytochromes P-450b and P-450c (which are the main isoenzymes of cytochrome P-450 in the PB- and MC-microsomes respectively), an immunological identity of the cytochrome P-450 isoforms during PFD and PB induction has been found. According to the rocket immunoelectrophoresis the content of cytochrome P-450 in PFD-microsomes, which is immunologically indistinguishable from P-450b, was approximately 70% of the total cytochrome P-450. Two forms of cytochrome P-450 were isolated from the liver microsomes of PFD-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from the PB-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromotographic behavior on DEAE-Sephacel column, molecular weight determined by sodium dodecyl sulphate (SDS) electrophoresis in polyacrylamide gel, immunoreactivity, peptide mapping, catalytic activity. The data presented demonstrate that PFD induced in rat liver microsomes the cytochrome P-450 forms whose immunological properties and substrate specificity correspond to those of the PB-type cytochrome P-450. These findings suggest that PFD and PB, which differ in their chemical structure, induce in the rat liver microsomes identical forms of cytochrome P-450.  相似文献   

8.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

9.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

10.
The effects of an oral administration of carbon tetrachloride on various liver microsomal and supernatant components were studied 1hr. and 2hr. after dosing. The modifications of such early changes resulting from a concomitant administration of promethazine together with the carbon tetrachloride were also investigated. The microsomal components studied were: cytochromes P-450 and b(5); inorganic pyrophosphatase; NADH- and NADPH-cytochrome c reductases; NADH- and NADPH-neotetrazolium reductases; a lipid-peroxidation system associated with the oxidation of NADPH and stimulated by ADP and Fe(2+). NAD- and NADP- DT-diaphorases were measured in the supernatant solution remaining after isolation of liver microsomes, and the distribution of RNA phosphorus between the microsomes and supernatant solution was also determined. Carbon tetrachloride produced a rapid fall in inorganic pyrophosphatase activity, a rather slower decrease in cytochrome P-450 content of the microsomes and small increases in the activities of NADH-cytochrome c reductase and neotetrazolium reductases. The activities of NADPH-cytochrome c reductase, the NADPH-ADP/Fe(2+)-linked lipid-peroxidation system, DT-diaphorases and the content of cytochrome b(5) in the microsomes were unchanged. There was also a loss of RNA phosphorus from the microsomes into the supernatant solution. The RNA phosphorus redistribution, the decrease in inorganic pyrophosphatase and the increases in neotetrazolium reductase activities were at least partially prevented by a concomitant dosing with promethazine. However, the decrease in cytochrome P-450 was not affected by promethazine treatment. These early changes are discussed in terms of the liver necrosis produced by carbon tetrachloride and which is greatly retarded in its onset by the administration of promethazine.  相似文献   

11.
Fractions of plasma membranes, Golgi apparatus, endoplasmic reticulum (ER), and nuclear envelope were isolated from rat liver and were characterized by electron microsocpe and biochemical methods. The purity of the fractions was controlled by morphometry and by marker enzyme activities. Amounts of cytochromes b5, P-450, and P-420 were measured, as well as the NADPH- and NADPH-cytochrome c reductase activities. The pigments of the microsomal electron transport system were found in all membrane fractions in relatively high amounts, thus excluding an origin by microsomal contamination. Purified preparations of plasma membrane and Golgi apparatus contained approximately 30% of the cytochrome b5 and cytochrome P-450 + P-420 found in ER membranes. Plasma membranes were also characterized by a high ratio of P-420/450. Degradation of cytochromes P-450 and P-420 was relatively rapid in all fractions, except in the ER. Cytochrome b5 extracted from plasma membranes was spectrophotometrically and enzymatically indistinguishable from ER cytochrome b5. However, immunnlogical characterization with rabbit antibodies against the trypsin-resistant core of microsomal cytochrome b5 showed the presence of at least two types of cytochrome b5 in ER membranes, in contrast to the plasma membranes in which only one of these components was detected. This immunological differentiation also demonstrates that the plasma membrane-bound cytochrome b5 is endogenous to this membrane and does not reflect contamination by ER elements. We conclude that cytochromes b5, P-450, and P-420 are not confined only to ER and nuclear membranes but also occur in signficant amounts in Golgi apparatus and plasma membranes. The findings are discussed in relation to observations of similar redox components in Golgi apparatus, secretory vesicles, and plasma membranes of other cells.  相似文献   

12.
A method for measuring the content of two groups of microsomal cytochrome P-450 isozymes--cytochromes P-450W and P-450L--with the active sites directed into the water phase and membrane lipids, respectively, has been developed. The method is based on the ability of the xanthine oxidase-menadione complex to reduce microsomal cytochromes b5 and P-450 under anaerobic conditions by transferring electrons to hemoproteins with the active sites directed into the water phase. Cytochrome b5 is completely reduced (to the dithionite level) and cytochrome P-450 is reduced partially (only a group of cytochromes P-450W). The amount of cytochromes P-450L is estimated using the difference between the total content of cytochrome P-450 reduced by sodium dithionite and the content of cytochromes P-450W. The possibility of controlling the ratio of these two isozyme groups in cytochrome P-450 in vivo in membranes of the endoplasmic reticulum by pretreatment of animals with a variety of chemicals has been demonstrated. The ratio of cytochromes P-450W and P-450L has been shown to decrease two-fold 18 days after three injections of phenobarbital into mice. Carbon tetrachloride and cyclophosphamide also decrease this ratio in vivo.  相似文献   

13.
The reduction of cytochrome P-450--CO complex in the presence of various agents in the reconstituted system of liver cell organelles was studied. The reconstituted system was obtained by the preincubation of isolated liver microsomes and mitochondria of the rats kept on a prolonged phenobarbital diet. The addition of glutamate (but not succinate), NAD+ and amytal (or rotenone) to the reconstituted system caused a 40-50% reduction of NADPH-reducible cytochrome P-450. The inhibitor of mitochondrial NADH-cytochrome b5 reductase dicumarol prevented the cytochrome P-450 reduction in the presence of glutamate, NAD+ and amytal but did not affect the reduction of cytochrome P-450 by the added NADH. It was concluded that the electron transfer from the NAD-dependent substrates of the inner mitochondrial respiratory chain to the microsomal cytochrome P-450 occurs with the participation of non-bound NAD and cytochrome b5 of the outer mitochondrial membrane on the condition that the membranes of the two main oxidative systems are in tight contact.  相似文献   

14.
1. The stereoselective hydroxylation of testosterone by microsomal cytochrome P-450 and the changes in level of components participated in the microsomal electron transport system were observed in the microsomes induced unique P-450 isozymes. 2. Flavone- and hesperetin-inducible P-450 catalyzed the hydroxylation of testosterone more effectively than other chemicals-inducible ones. 3. The P-450 in all the microsomal preparations tested most rapidly oxidized testosterone to 6 beta-monohydroxy form. 4. Particularly, MC- and BNF-inducible P-450 showed high stereoselectivity on C6-position of testosterone, and PB-, flavone- and hesperetin-inducible one showed that on C2-position of this compound, respectively. 5. This specificity of two flavonoid-inducible P-450 for the formation of 2 alpha- and 2 beta-epimer of monohydroxytestosterone was opposite to each other. 6. The content of P-450 and the activity of NADPH-cytochrome P-450 reductase were high in PB-, MC- and BNF-microsomes, whereas NADH-cytochrome b5 reductase activity was high in two flavonoid-microsomes and the content of cytochrome b5 was not changed except the PB-treated rats. 7. It is suggested that the increasing activities of testosterone hydroxylases in flavonoid-microsomes seems to be closely related to NADH-cytochrome b5 reductase.  相似文献   

15.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

16.
The effects of exogenous heme on the activity of delta-aminolevulinate synthase, heme oxygenase, tryptophan-2.3-dioxygenase and microsomal cytochrome content in rat liver were studied. It was shown that hemin chloride diminishes the delta-aminolevulinate synthase activity and provokes heme oxygenase induction. This is paralleled with the induction of the tryptophan 2.3-dioxygenase apoenzyme and an increase in the saturation of the enzyme with heme. The cytochrome b5 content does not change thereby, whereas that of cytochrome P-450 shows a decrease. Upon combined administration of actinomycin D and hemin the cytochrome P-450 level is markedly increased. Actinomycin D by itself has no effect on the hemoprotein concentration. It is concluded that the increase in the cytochrome P-450 level results from the activation of heme-induced mRNA translation.  相似文献   

17.
(1) We evaluated the involvement of brain mitochondrial and microsomal cytochrome P-450 in the metabolization of known porphyrinogenic agents, with the aim of improving the knowledge on the mechanism leading to porphyric neuropathy. We also compared the response in brain, liver and kidney. To this end, we determined mitochondrial and microsomal cytochrome P-450 levels and the activity of NADPH cytochrome P-450 reductase. (2) Animals were treated with known porphyrinogenic drugs such as volatile anaesthetics, allylisopropylacetamide, veronal, griseofulvin and ethanol or were starved during 24 h. Cytochrome P-450 levels and NADPH cytochrome P-450 reductase activity were measured in mitochondrial and microsomal fractions from the different tissues. (3) Some of the porphyrinogenic agents studied altered mitochondrial cytochrome P-450 brain but not microsomal cytochrome P-450. Oral griseofulvin induced an increase in mitochondrial cytochrome P-450 levels, while chronic Isoflurane produced a reduction on its levels, without alterations on microsomal cytochrome P-450. Allylisopropylacetamide diminished both mitochondrial and microsomal cytochrome P-450 brain levels; a similar pattern was detected in liver. Mitochondria cytochorme P-450 liver levels were only diminished after chronic Isoflurane administration. In kidney only mitochondrial cytochrome P-450 levels were modified by veronal; while in microsomes, only acute anaesthesia with Enflurane diminished cytochrome P-450 content. (4) Taking into account that δ-aminolevulinic acid would be responsible for porphyric neuropathy, we investigated the effect of acute and chronic δ-aminolevulinic acid administration. Acute δ-aminolevulinic acid administration reduced brain and liver cytochrome P-450 levels in both fractions; chronic δ-aminolevulinic acid administration diminished only liver mitochondrial cytochrome P-450. (5) Brain NADPH cytochrome P-450 reductase activity in animals receiving allylisopropylacetamide, dietary griseofulvin and δ-aminolevulinic acid showed a similar profile as that for total cytochrome P-450 levels. The same response was observed for the hepatic enzyme. (6) Results here reported revealed differential tissue responses against the xenobiotics assayed and give evidence on the participation of extrahepatic tissues in porphyrinogenic drug metabolization. These studies have demonstrated the presence of the integral Phase I drug metabolizing system in the brain, thus, total cytochrome P-450 and associated monooxygenases in brain microsomes and mitochondria would be taken into account when considering the xenobiotic metabolizing capability of this organ. Dedicated to the memory of Dr. Susana Afonso  相似文献   

18.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

19.
The microsomal cytochrome content and enzyme activity has been determined in liver, kidney, lungs and intestinal mucous from guinea pig males which were injected 25% ethanol intraperitoneally at a dose of 2 g per 1 kg of body mass. The changes in cytochrome P-450 and b5 content, amidopyrine-N-demethylase, aniline hydroxylase, p-nitrophenol hydroxylase. NADP.H-cytochrome-c-reductase activities in investigated organs of the animals have been found depending on the ethanol intoxication period (for 3, 6 or 14 days). Changes of the same type in microsomal enzyme activities have been discovered in liver, lungs and intestine, but not in kidney that is accounted for the substrate specificity and inducibility of the cytochrome P-450 some forms in extrahepatic tissues.  相似文献   

20.
Incorporation of detergent-solubilized cytochrome b5 into phenobarbital-induced rabbit liver microsomal fractions decelerates hexobarbital-dependent reduction of ferric cytochrome P-450; this is accompanied by retardation of NADPH utilization and H2O2 formation in the assay media. Integration of manganese-substituted cytochrome b5 into the microsomal preparations fails to affect these parameters. Analysis of the cytochrome P-450 reduction kinetics in the presence of increasing amounts of cytochrome b5 reveals a gradual augmentation of the amplitude of slow-phase electron transfer at the expense of the relative contribution of the fast phase; finally, a slow, apparently monophasic reaction persists. This defect in enzymatic reduction is not due to detergent effects and also does not seem to reflect cytochrome b5-induced perturbation of anchoring of NADPH-cytochrome c(P-450) reductase to cytochrome P-450. Experiments with the highly purified cytochrome P-450 isozyme LM2, in which amino acid residue(s) close to the heme edge had undergone suicidal inactivation through covalent attachment of chloramphenicol metabolite(s) do not exclude the possibility that cytochrome b5 and reductase might compete for a common electron transmission site on the terminal acceptor. Hence, the inhibitory action of cytochrome b5 on the reduction of ferric cytochrome P-450 is tentatively attributed to partial substitution of the former pigment for reductase in direct transport of the first electron to the monooxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号