首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA double-strand breaks (DSBs) are the most hazardous lesions arising in the genome of eukaryotic organisms, and yet occur normally during DNA replication, meiosis, and immune system development. The efficient repair of DSBs is crucial in maintaining genomic integrity, cellular viability, and the prevention of tumorigenesis. As a consequence, eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs and ultimately repair the break. The swiftness of the DNA DSB response has paved to the identification of sensors and transducers which allowed to generate a hierarchical signaling paradigm depicting the transduction of the damage signal to numerous downstream effectors (Fig. 1). The function of such effectors involve posttranslational modifications through phosphorylation, acetylation, and methylation of the substrates. This review will address the control of DSBs in damaged eukaryotic cells, the physiological processes that require the introduction of a DSB into the genome, and the maintenance of DSBs in non-damaged cells.  相似文献   

2.
DNA double-strand break repair by homologous recombination   总被引:11,自引:0,他引:11  
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.  相似文献   

3.
DNA double-strand breaks (DSBs) are critical lesions that can lead to cell death or chromosomal rearrangements. Rad51 is necessary for most mitotic and meiotic DSB repair events, although a number of RAD51-independent pathways exist. Previously, we described DSB repair in rad51Delta yeast diploids that was stimulated by a DNA region termed "facilitator of break-induced replication" (FBI) located approximately 30kb from the site of an HO-induced DSB. Here, we demonstrate that FBI is a large inverted DNA repeat that channels the repair of DSBs into the single-strand annealing-gross chromosomal rearrangements (SSA-GCR) pathway. Further, analysis of DSB repair in rad54Delta cells allowed us to propose that the SSA-GCR repair pathway is suppressed in the presence of Rad51p. Therefore, an additional role of Rad51 might be to protect eukaryotic genomes from instabilities by preventing chromosomal rearrangements.  相似文献   

4.
Replication protein A (RPA), the eukaryotic single-strand deoxyribonucleic acid (DNA [ss-DNA])-binding protein, is involved in DNA replication, nucleotide damage repair, mismatch repair, and DNA damage checkpoint response, but its function in DNA double-strand break (DSB) repair is poorly understood. We investigated the function of RPA in homology-dependent DSB repair using Xenopus laevis nucleoplasmic extracts as a model system. We found that RPA is required for single-strand annealing, one of the homology-dependent DSB repair pathways. Furthermore, RPA promotes the generation of 3' single-strand tails (ss-tails) by stimulating both the Xenopus Werner syndrome protein (xWRN)-mediated unwinding of DNA ends and the subsequent Xenopus DNA2 (xDNA2)-mediated degradation of the 5' ss-tail. Purified xWRN, xDNA2, and RPA are sufficient to carry out the 5'-strand resection of DNA that carries a 3' ss-tail. These results provide strong biochemical evidence to link RPA to a specific DSB repair pathway and reveal a novel function of RPA in the generation of 3' ss-DNA for homology-dependent DSB repair.  相似文献   

5.
In eukaryotic cells, the repair of DNA double strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway is critical for genome stability. Until recently it was assumed that this DSB repair pathway was restricted to the eukarya. However, a functionally homologous prokaryotic NHEJ repair apparatus has now been identified and characterised. In contrast to the complex eukaryotic system, bacterial NHEJ appears to require only two proteins, Ku and a multifunctional DNA ligase, which form a two-component repair complex at the termini of DSBs. Together, these DNA repair factors possess all of the break-recognition, end-processing and ligation activities required to facilitate the complex task of DSB repair, both in vitro and in vivo. Our recent findings lay the foundation for understanding the molecular mechanisms that co-ordinate the processing and joining of DSBs by NHEJ in bacteria and also provides a conceptual framework for delineating the end-processing reactions in eukaryotes.  相似文献   

6.
唐子执  刘聪  曾鸣 《生命科学》2014,(11):1172-1175
在各种DNA损伤中,DNA双链断裂(double-strand break,DSB)是最为严重的一种,快速准确地修复DSB对维持基因组稳定性起着至关重要的作用。真核生物细胞通过一系列复杂的信号转导途径激活对DSB的修复,其中最为重要的是同源重组和非同源末端连接机制。最近的研究表明,这两种方式在DSB修复的早期是相互竞争的关系,其选择在很大程度上受到53BP1及同源蛋白质的调控。将讨论53BP1作为DSB修复途径的核心因子,在染色质水平整合BRCA1、Ct IP等修复因子和多种组蛋白修饰构成的信号途径,介导同源重组和非同源末端连接通路选择的分子机制。  相似文献   

7.
8.
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.  相似文献   

9.
Extrachromosomal circular DNA (eccDNA) are present within all eukaryotic organisms and actively contribute to gene expression changes. MicroDNA (200-1000bp) are the most abundant type of eccDNA and can amplify tRNA, microRNA, and novel si-like RNA sequences. Due to the heterogeneity of microDNA and the limited technology to directly quantify circular DNA molecules, the specific DNA repair pathways that contribute to microDNA formation have not been fully elucidated. Using a sensitive and quantitative assay that quantifies eight known abundant microDNA, we report that microDNA levels are dependent on resection after double-strand DNA break (DSB) and repair by Microhomology Mediated End Joining (MMEJ). Further, repair of DSB without resection by canonical Non-Homologous End Joining (c-NHEJ) diminishes microDNA formation. MicroDNA levels are induced locally even by a single site-directed DSB, suggesting that excision of genomic DNA by two closely spaced DSB is not necessary for microDNA formation. Consistent with all this, microDNA levels accumulate as cells undergo replication in S-phase, when DNA breaks and repair are elevated, and microDNA levels are decreased if DNA synthesis is prevented. Thus, formation of microDNA occurs during the repair of endogenous or induced DNA breaks by resection-based DNA repair pathways.  相似文献   

10.
The role of DNA double-strand break (DSB) repair in radioresistance of Saccharomyces cerevisiae G1 cells is discussed. The contribution of rapid and slow DNA DSB repair to radioresistance of diploid yeast has been estimated. The contribution of the DNA DSB repair involving no homologous chromosome interaction is shown to be insignificant in comparison with the recombinational repair. The rapid DNA DSB repair efficiency calculation method based on the proposed yeast radiation inactivation model is given. The calculations are in a satisfactory agreement with the experimental data. Possible mechanisms of radiation induction of lethal sectoring in yeast are discussed. This phenomenon is supposed to be due to the DNA DSB processing during vegetative division of irradiated cells. A general scheme of radiation inactivation of yeast cells is proposed.  相似文献   

11.
Double-strand DNA breaks (DSBs) resulting from metabolic cellular processes and external factors pose a serious threat to the stability of the genome, but the cells have molecular mechanisms for the efficient repair of this type of damage. In this review, we examine two main biochemical pathways of repairing the double-strand DNA breaks in eukaryotic cells—DNA strands nonhomologous end joining and homologous recombination between sister chromatids or chromatids of homologous chromosomes. Numerous data obtained recently for various eukaryotic cells suggest that there is a complex interplay between the main DSB repair pathways, which normally facilitates efficient repair and maintenance of the structural and functional integrity of the genome, but which, at the same time, under conditions of exposure to genotoxic factors may induce increased genomic instability.  相似文献   

12.
The non-homologous end-joining pathway promotes direct enzymatic rejoining of DNA double-strand breaks (DSBs) and is an important determinant of genome stability in eukaryotic cells. Although previous work has shown that this pathway requires Ku, DNA-PKcs and the DNA ligase IV/XRCC4 complex, we found that these proteins alone did not promote efficient joining of cohesive-ended DNA fragments in a cell-free assay. To identify factors that were missing from the reaction, we screened fractions from HeLa cell extracts for the ability to stimulate the joining of cohesive DNA ends in a complementation assay containing other known proteins required for DNA DSB repair. We identified a factor that restored end-joining activity to the level observed in crude nuclear extracts. Factor activity copurified with Rad50, Mre11 and NBS1, three proteins that have previously been implicated in DSB repair by genetic and cytologic evidence. Factor activity was inhibited by anti-Mre11 antibody. The reconstituted system remained fully dependent on DNL IV/XRCC4 and at least partially dependent on Ku, but the requirement for DNA-PKcs was progressively lost as other components were purified. Results support a model where DNA-PKcs acts early in the DSB repair pathway to regulate progression of the reaction, and where Mre11, Rad50 and NBS1 play a key role in aligning DNA ends in a synaptic complex immediately prior to ligation.  相似文献   

13.
Long DNA palindromes are sites of genome instability (deletions, amplification, and translocations) in both prokaryotic and eukaryotic cells. In Escherichia coli, genetic evidence has suggested that they are sites of DNA cleavage by the SbcCD complex that can be repaired by homologous recombination. Here we obtain in vivo physical evidence of an SbcCD-induced DNA double-strand break (DSB) at a palindromic sequence in the E. coli chromosome and show that both ends of the break stimulate recombination. Cleavage is dependent on DNA replication, but the observation of two ends at the break argues that cleavage does not occur at the replication fork. Genetic analysis shows repair of the break requires the RecBCD recombination pathway and PriA, suggesting a mechanism of bacterial DNA DSB repair involving the establishment of replication forks.  相似文献   

14.
Capture of DNA sequences at double-strand breaks in mammalian chromosomes   总被引:8,自引:0,他引:8  
Lin Y  Waldman AS 《Genetics》2001,158(4):1665-1674
To study double-strand break (DSB)-induced mutations in mammalian chromosomes, we transfected thymidine kinase (tk)-deficient mouse fibroblasts with a DNA substrate containing a recognition site for yeast endonuclease I-SceI embedded within a functional tk gene. To introduce a genomic DSB, cells were electroporated with a plasmid expressing endonuclease I-SceI, and clones that had lost tk function were selected. Among 253 clones analyzed, 78% displayed small deletions or insertions of several nucleotides at the DSB site. Surprisingly, approximately 8% of recovered mutations involved the capture of one or more DNA fragments. Among 21 clones that had captured DNA, 10 harbored a specific segment of the I-SceI expression plasmid mapping between two replication origins on the plasmid. Four clones had captured a long terminal repeat sequence from an intracisternal A particle (an endogenous retrovirus-like sequence) and one had captured what appears to be a cDNA copy of a moderately repetitive B2 sequence. Additional clones displayed segments of the tk gene and/or microsatellite sequences copied into the DSB. This first systematic study of DNA capture at DSBs in a mammalian genome suggests that DSB repair may play a considerable role in the evolution of eukaryotic genomes.  相似文献   

15.
Lundblad V 《Mutation research》2000,451(1-2):227-240
This review focuses on the factors that define the differences between the two types of DNA ends encountered by eukaryotic cells: telomeres and double strand breaks (DSBs). Although these two types of DNA termini are functionally distinct, recent studies have shown that a number of proteins is shared at telomeres and sites of DSB repair. The significance of these common components is discussed, as well as the types of DNA repair events that can compensate for a defective telomere.  相似文献   

16.
A double -strand break (DSB) is one of the most deleterious forms of DNA damage. In eukaryotic cells, two main repair pathways have evolved to repair DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is the predominant pathway of repair in the unicellular eukaryotic organism, S. cerevisiae. However, during replicative aging the relative use of HR and NHEJ shifts in favor of end-joining repair. By monitoring repair events in the HO-DSB system, we find that early in replicative aging there is a decrease in the association of long-range resection factors, Dna2-Sgs1 and Exo1 at the break site and a decrease in DNA resection. Subsequently, as aging progressed, the recovery of Ku70 at DSBs decreased and the break site associated with the nuclear pore complex at the nuclear periphery, which is the location where DSB repair occurs through alternative pathways that are more mutagenic. End-bridging remained intact as HR and NHEJ declined, but eventually it too became disrupted in cells at advanced replicative age. In all, our work provides insight into the molecular changes in DSB repair pathway during replicative aging. HR first declined, resulting in a transient increase in the NHEJ. However, with increased cellular divisions, Ku70 recovery at DSBs and NHEJ subsequently declined. In wild type cells of advanced replicative age, there was a high frequency of repair products with genomic deletions and microhomologies at the break junction, events not observed in young cells which repaired primarily by HR.  相似文献   

17.
The first step of homology-dependent DNA double-strand break (DSB) repair is the 5′ strand-specific processing of DNA ends to generate 3′ single-strand tails. Despite extensive effort, the nuclease(s) that is directly responsible for the resection of 5′ strands in eukaryotic cells remains elusive. Using nucleoplasmic extracts (NPE) derived from the eggs of Xenopus laevis as the model system, we have found that DNA processing consists of at least two steps: an ATP-dependent unwinding of ends and an ATP-independent 5′3′ degradation of single-strand tails. The unwinding step is catalyzed by DNA helicases, the major one of which is the Xenopus Werner syndrome protein (xWRN), a member of the RecQ helicase family. In this study, we report the purification and identification of the Xenopus DNA2 (xDNA2) as one of the nucleases responsible for the 5′3′ degradation of single-strand tails. Immunodepletion of xDNA2 resulted in a significant reduction in end processing and homology-dependent DSB repair. These results provide strong evidence that xDNA2 is a major nuclease for the resection of DNA ends for homology-dependent DSB repair in eukaryotes.  相似文献   

18.
DNA double-strand breaks (DSBs) occur in the context of a highly organized chromatin environment and are, thus, a significant threat to the epigenomic integrity of eukaryotic cells. Changes in break-proximal chromatin structure are thought to be a prerequisite for efficient DNA repair and may help protect the structural integrity of the nucleus. Unlike most bona fide DNA repair factors, chromatin influences the repair process at several levels: the existing chromatin context at the site of damage directly affects the access and kinetics of the repair machinery; DSB induced chromatin modifications influence the choice of repair factors, thereby modulating repair outcome; lastly, DNA damage can have a significant impact on chromatin beyond the site of damage. We will discuss recent findings that highlight both the complexity and importance of dynamic and tightly orchestrated chromatin reorganization to ensure efficient DSB repair and nuclear integrity. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

19.
XRCC3 was originally identified as a human gene able to complement the DNA damage sensitivity, chromosomal instability and impaired growth of the mutant hamster cell line irs1SF. More recently, it has been cloned, sequenced and found to bear sequence homology to the highly conserved eukaryotic repair and recombination gene RAD51. The phenotype of irs1SF and the identification of XRCC3 as a member of the RAD51 gene family have suggested a role for XRCC3 in repair of DNA damage by homologous recombination. Homologous recombinational repair (HRR) of a specifically induced chromosomal double-strand break (DSB) was assayed in irs1SF cells with and without transient complementation by human XRCC3. Complementation with XRCC3 increased the frequencies of repair by 34- to 260-fold. The results confirm a role for XRCC3 in HRR of DNA DSB, and the importance of this repair pathway for the maintenance of chromosomal integrity in mammalian cells.  相似文献   

20.
DNA double-strand breaks (DSBs) in eukaryotic cells can be repaired by non-homologous end-joining or homologous recombination. The complex containing the Mre11, Rad50 and Nbs1 proteins has been implicated in both DSB repair pathways, even though they are mechanistically different. To get a better understanding of the properties of the human Mre11 (hMre11) protein, we investigated some of its biochemical activities. We found that hMre11 binds both double- and single-stranded (ss)DNA, with a preference for ssDNA. hMre11 does not require DNA ends for efficient binding. Interestingly, hMre11 mediates the annealing of complementary ssDNA molecules. In contrast to the annealing activity of the homologous recombination protein hRad52, the activity of hMre11 is abrogated by the ssDNA binding protein hRPA. We discuss the possible implications of the results for the role(s) of hMre11 in both DSB repair pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号