首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult ovariectomized guinea pigs were tested for aggressive behavior during treatments with estradiol benzoate (EB), testosterone propionate (TP), dihydrotestosterone propionate (DHTP), or with DHTP + EB. Aggression was not influenced by EB, but was augmented by all other steroid treatments. DHTP given by itself was not as effective as TP, but was significantly potentiated by the concurrent administration of EB. When tested for mounting behavior, ovariectomized guinea pigs were refractory to DHTP and to DHTP + EB, whereas they mounted when given TP. The findings suggest that the hormone-sensitive neural systems which mediate aggression in female guinea pigs have in part different steroid requirements from those subserving the activation of mounting. In addition, the findings emphasize that DHTP + EB administration does not always duplicate the effects of TP for behavioral endpoints, since DHTP + EB and TP had similar effects on aggression, but quite different effects on mounting in female guinea pigs. These results stand in contrast to those obtained with male guinea pigs, in which DHTP has been reported to be as effective as TP for the activation of mounting. It is hypothesized that both sex-specific and hormone-specific activational phenomena may be genetically regulated by factors separate from those responsible for the establishment of prenatal hormonal conditions.  相似文献   

2.
Treatment of nestling zebra finches with estradiol benzoate (EB) has been shown to masculinize singing in females and demasculinize copulatory behavior in males, suggesting that sexual differentiation of these behaviors is under hormonal control such that testicular hormones induce the capacity for song and ovarian hormones suppress the capacity for mounting. Two experiments were carried out to obtain a more complete picture of sexual differentiation in this species. In Experiment 1, nestlings were injected daily for the first 2 weeks after hatching with testosterone propionate (TP), dihydrotestosterone propionate (DHTP), or a combination of DHTP and EB. As adults, birds were gonadectomized and implanted with TP prior to testing, then tested again after implantation with EB. Singing was not increased in females by any of the treatments. The only effect of either TP or DHTP given alone was defeminization of female proceptive behavior by DHTP. Thus androgens appear to have less influence than estrogens on sexual differentiation of behavior in this species. The combination of DHTP and EB demasculinized mounting in males. In Experiment 2, nestlings were gonadectomized at 7-9 days of age and implanted with TP prior to testing in adulthood. Early gonadectomy had little effect on later behavior; early castrated males sang, danced, and copulated normally and early ovariectomized females neither sang nor mounted.  相似文献   

3.
Male rats castrated on the second day after birth (Day 2) were, for the next 10 days, given daily injections of one of five steroids or steroid combinations: 200 μg of testosterone propionate (TP); 200 μg of dihydrotestosterone propionate (DHTP); 5 μg of estradiol benzoate (EB); 5 μg of estradiol benzoate plus 200 μg of dihydrotestosterone propionate; oil vehicle (VH). Control male rats castrated on Day 90 received a sham castration and oil vehicle in the neonatal period. All animals were given TP in adulthood and tested for male sexual behavior. There was no difference in mounting activity among the subjects. Day 2 DHTP subjects displayed intromissions but were incapable of ejaculating. The more frequent display of intromissions by Day 2 DHTP animals in comparison to Day 2 VH animals could be solely due to their larger and more highly developed penes. On the other hand, the ejaculatory failure of the Day 2 DHTP subjects was attributed to some deficiency in central neural processes controlling ejaculatory mechanisms rather than inadequate penile development. Equivocal results were obtained with the Day 2 EB and Day 2 EB-DHTP animals in that only a few animals in both groups showed an ejaculatory pattern.  相似文献   

4.
This study demonstrated that the combined administration of estrogens and androgens activates the display of mounting by female hamsters. Forty-nine ovariectomized hamsters were injected daily with either estradiol benzoate (EB, N = 8); dihydrotestosterone propionate (DHTP, N = 7); testosterone propionate (TP, N = 6); androstenedione (AD, N = 9); EB plus DHTP (N = 10); or estrone plus DHTP (E1 + DHTP, N = 9). All androgens were administered at a dose of 1 mg per day for the first 24 days and at a dose of 2 mg per day for the last 14 days. The EB dose was 6 μg per day and the E1 dose was 100 μg per day. Females were tested for male behavior once a week starting on Day 10 of injections and for female behavior on Day 39.One hundred percent of EB + DHTP treated females; 67% of the E1 + DHTP treated females; 55% of the AD treated females; 33% of the TP treated females; 29% of the DHTP treated females; and none of the EB treated females mounted during at least one test. Only one of the E1 + DHTP treated females showed the intromission pattern; otherwise most females which mounted displayed the intromission pattern. The median number of days preceding the onset of mounting ranged from 21 to 31 days and did not differ among treatment groups.  相似文献   

5.
We administered the synthetic estrogen, diethylstilbestrol (DES), or the antiestrogen, tamoxifen, to pregnant guinea pigs and observed the consequences for sexual differentiation of their female offspring. Hormones were administered during the period when treatment of fetuses with testosterone influences the development of sex-related traits (approximately Days 30 to 65 of gestation). Ovarian function, masculine and feminine sexual behavior, and the structure of a sexually dimorphic neural region in the preoptic area were assessed in adulthood in hormone-exposed animals and in oil-treated and untreated controls. Prenatal exposure to DES dipropionate (DESDP) caused masculinization and defeminization. DESDP-treated females mounted more than control females, both without hormonal stimulation and when given testosterone propionate (TP) as adults. The sexually dimorphic neural region was also masculinized in these females. In regard to defeminization, they showed delayed vaginal opening, impaired progesterone (P) production, an absence of corpora lutea, and impaired lordosis and mounting responses to estradiol benzoate (EB) and P. Prenatal treatment with tamoxifen produced a complicated pattern of results. Tamoxifen-exposed females evidenced less masculine-typical behavior, showing diminished mounting without hormonal stimulation and in response to TP. However, they also showed delayed vaginal opening, enhanced P production, and impaired mounting in response to EB and P. Their lordosis behavior and the volume of the sexually dimorphic neural region were unaffected. These results suggest that estrogens play a substantial role in sexual differentiation in the guinea pig. High levels of estrogen promote masculine-typical development, and unusually low levels may impair some aspects of both masculine-typical and feminine-typical development.  相似文献   

6.
Two experiments were performed with ovariectomized female rats in an attempt to determine whether estradiol and dihydrotestosterone work synergistically in the brain to activate mounting behavior. In Expt 1, performed in Göteborg, it was found that females treated daily with 2 μg estradiol benzoate (EB) combined with 500 μg dihydrotestosterone (DHT) displayed significantly more mounts with pelvic thrusting than other females treated with the oil vehicle, 500 μg DHT, or 2 μg EB. The behavior of rats receiving EB + DHT was indistinguishable from that of yet another group of females which received 200 μg testosterone propionate (TP). In Expt 2, performed in Rotterdam, it was found that ovariectomized female rats treated with either 200 μg TP or 2 μg EB + 200 μg dihydrotestosterone propionate (DHTP) mounted significantly more than females treated with 2 μg EB. Both clitoral size and the growth of cornified papillae on the glans clitoris were stimulated by the administration of TP or EB + DHTP. However, in no group was the frequency of mounting affected by anesthetization of the clitoris and external vagina with lidocaine paste. Lordosis quotients of females treated with EB + DHTP were significantly lower than in rats receiving either EB or TP, again regardless of whether or not the genital region was anesthetized. It is concluded that the effects of DHT on estradiol-induced mounting and receptivity most likely result from the action of this androgen on the brain, and not from the stimulatory effect which DHT may exert on genital sensory receptors.  相似文献   

7.
We treated pregnant guinea pigs on Day 50 of gestation with 10 mg testosterone propionate (TP), obtaining fetuses 2, 4, 8, or 18 h later as well as after 5 days of treatment. In a second group of pregnant guinea pigs, dihydrotestosterone propionate (DHTP), estradiol benzoate (E2B), progesterone (P), or cortisol was given 2 h before obtaining fetuses. Although TP treatment elevated fetal serum T (p less than 0.05), brain cytosolic androgen receptor (ARc) content was unchanged in fetuses of either sex. In female fetuses, nuclear androgen receptors (ARn) increased 10-fold in medial-basal hypothalamus (MBH) and preoptic area (POA) at 2 and 4 h (respectively) after treatment, while fetal male ARn content was unchanged. Maternal injection of other steroids (E2B, P, or cortisol, but not DHTP) significantly increased these hormones in the fetus 2 h later (p less than 0.05). Only androgens affected fetal androgen receptor (AR) content. While TP increased ARn in female MBH, DHTP decreased ARc in fetal anterior pituitary of both sexes. In this latter case, a metabolite of DHT may mediate the effects. We conclude that T crosses the guinea pig placenta and activates ARn in POA and MBH of female fetuses; male ARn appear to be maximally occupied by endogenous T. Steroids of other classes do not induce AR responses in fetal guinea pig brain. These AR changes may represent an initial cellular mechanism in brain sexual differentiation.  相似文献   

8.
Female guinea pigs were treated with 200 micrograms estradiol dipropionate (ED) daily from Days 1 to 15 of life. As adults they all ovulated. After gonadectomy and estrogen-progesterone treatment in adulthood, lordosis behavior was evident and showed no decrements (compared with neonatally oil-treated controls) except for a marginal decrease in maximum duration scores. However, testosterone propionate treatment in adulthood significantly increased mounting behavior in neonatally ED-treated females compared to the controls. On the other hand, estrogen-progesterone treatment in adulthood stimulated mounting in the neonatally oil-treated group, but not in the neonatally estrogenized group. The results suggest that at least some aspects of steroid-dependent behaviors can be permanently influenced by estrogen treatment after the presumed prenatal critical period for sexual differentiation has been completed in guinea pigs.  相似文献   

9.
Ovariectomized adult rhesus monkeys were injected daily for 10 days with either 1 mg of dihydrotestosterone propionate (DHTP), 1 mg of testosterone propionate (TP), 10 μg of estradiol benzoate (EB), or 500 μg of estrone (El). On the 5th and 10th days of treatment, females received two 24-min behavioral tests with each of two adult males. All females received every hormonal treatment during the course of the study, with the order of treatments counterbalanced. Prior to the initiation of an hormonal treatment, each subject received two tests with no hormone treatment (NORX). Three behaviors related to female proceptivity were recorded. Treatment with DHTP had no influence on any aspect of proceptivity measured, in comparison to the NORX condition, whereas El or TP treatment augmented the frequencies of two of the proceptive behaviors and EB increased all three. The response of the male toward the female was influenced by the female's hormonal condition. Treatment with TP or DHTP did not increase the frequency of male contact or the mount rate in comparison to the NORX condition, whereas EB or El treatment did. In addition, DHTP was the only steroid which failed to increase the percentage of tests with intromission or ejaculation when compared to NORX. Female receptivity, as measured by acceptance or rejection of male contacts, was not different for the NORX-, TP-, EB-, or El-treated conditions. DHTP treatment, however, reduced female receptivity in comparison to all other conditions. Treatment with DHTP or TP resulted in an increase in the frequency of female yawning behavior, whereas neither estrogen treatment showed any effect on this behavior. The influences of TP on female proceptive and male sexual behavior were never duplicated or even approximated by treatment of females with the nonaromatizable DHTP. Nor was there any evidence that TP inhibited female receptivity below the level characteristic of NORX females, as was true for DHTP.  相似文献   

10.
To investigate the role of neonatal androgen stimulation in the development of the potential for masculine and feminine sexual behavior in the mouse, different groups of mice were hormonally manipulated early in life. One group of female mice was administered testosterone propionate (TP) within 24 hr of birth; a second group of females was given a control injection of oil on the day of birth; a third group of females received an injection of TP on the 10th day after birth. A group of males received a control injection of oil on the day of birth. All mice were gonadectomized at about 30 days of age. At 60 days of age, mice were injected with estrogen and progesterone and tested for sexual receptivity; several weeks later all mice were injected with TP and tested for male sexual behavior. Female behavior: Females given oil at birth and females given TP on the 10th day after birth showed high levels of sexual receptivity as adults following estrogen-progesterone treatment. Females given TP on the day of birth, and male mice, rarely exhibited lordosis following estrogen-progesterone treatment. Male behavior: Most mice, regardless of genetic sex or neonatal treatment, mounted in adulthood following administration of exogenous androgen. There was little difference in mounting frequency between groups, suggesting that exogenous or endogenous androgen stimulation of the neonatal mouse does not facilitate adult mounting behavior. These data for the mouse are in essential agreement with existing data for the rat, and indicate that sexual behavioral differentiation induced by androgen stimulation in infancy is best characterized as an inhibition of the potential to display feminine sexual behavior in adulthood.  相似文献   

11.
In Experiment 1, female rats were given a single subcutaneous injection of 1.25 mg 5alpha-dihydrotestosterone (DHT) or its propionate (DHTP) on day 5 of postnatal life. All of them showed regular estrous cycles as adults like untreated control animals. At about 60 days of age, the rats were ovariectomized and given 7 daily injections of 2 mg progesterone (P) plus 0.2 mug estradiol-17beta (ED). Uterine trauma applied on the 4th day of P-ED injections resulted in well developed deciduomata in all animals by the day after the last injection. This made a sharp contrast to the failure of female rats receiving testosterone propionate (TP) neonatally to give a positive response under similar experimental conditions (Takewaki and Ohta, 1974). The mean weight of traumatized horns was significantly larger in DHTP-treated rats (but not in DHT-treated rats) than in controls. In Experiment 2, rats were ovariectomized on day 4 and given a dose of 1.25 mg DHT or DHTP on day 5. Controls were ovariectomized on day 4 but not given any steroid on the next day. A series of 7 daily injections of 2 mg P plus 0.2 mug ED was started at about 60 days of age, after the animals had received 3 daily injections of 0.2 mug ED or 30 daily injections of 0.1 mug ED. Incidence of deciduomata following uterine traumatization was markedly lowered only in animals treated with DHTP neonatally and given 0.1 mug ED for 30 days as adults, no significant differences being found in both incidence and size of deciduomata among the other groups. It was suggested that the effects of neonatal steroid administration on uterine responsiveness in adulthood are specific to the steroid. The previous conclusion that persistent estrus in androgen-sterilized rats plays a part in the reduction of uterine responsiveness was confirmed. An exposure of rats to estrogen for a prolonged postpuberal period was without effect, unless the animals had received enough androgen neonatally.  相似文献   

12.
Two types of pseudohermaphroditic female rhesus produced by exposure to either testosterone propionate (TP) or dihydrotestosterone propionate (DHTP) prior to birth were ovariectomized postpuberally and evaluated for the display of male-typical sexual behavior in response to exogenous TP in adulthood (2 mg/kg/day for 12 weeks). Their performance in standardized tests with estrogenized female partners was compared to that of neonatally gonadectomized males and females identically tested and treated with exogenous TP as adults. In addition intact adult males not given exogenous TP were tested with the same estrogenized female partners. There were no reliable differences between the two types of pseudohermaphrodites on any measure of behavior shown during the tests. Accordingly results were combined. Reliable behavioral changes induced by the TP given in adulthood were limited to increases in purse-lip responses, the induced increases were similar in pseudohermaphrodites and castrated males, and increases were reliably greater in these two groups of subjects than in females. Pseudohermaphrodites and castrated males did not differ reliably from intact males in performance of purse-lip gestures during TP treatment. In the performance of mounting, however, pseudohermaphrodites and castrated males remained consistently below the standard of the intact males. The estrogenized female partners displayed proceptive responses most frequently to the intact males and least frequently to the females. Their proceptive responses with castrated males resembled their performance with intact males, but with pseudohermaphrodites their proceptive responses more closely resembled their performance with females. Receptive behavior of the female partners was displayed most frequently to intact males, at intermediate levels to castrated males, and least often to pseudohermaphrodites. Results are completely consistent with the notion that androgens in high concentrations before birth alter mechanisms related to the later display of masculine behavior. These alterations in behavioral mechanisms are of such a nature that the display of male-typical behavior induced by androgens in adulthood is more pronounced and more frequent than it would have been otherwise. The alterations in masculine behavior observed in pseudohermaphroditic rhesus are not different in kind or scope than those reported extensively for lower mammals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Groups of female TMD rats were treated either with estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), testosterone propionate (TP), EB + DHTP (EB/DHTP), or with oil. These groups of females were tested for social aggression and for masculine and feminine sexual behavior. In addition, patterns of masculine and feminine sexual responses during the aggressive encounters, were investigated. TP-treated females of the same strain were used as opponents in the tests for aggression. In accordance with previous results, EB did not activate aggression whereas TP treatment resulted in a significant increase in aggression in females. Aggressive responses were activated by adding DHTP to EB, up to levels equal to those activated by TP. Sexual responses were observed in the tests for aggression as well as in tests for sexual behavior. The results indicated that feminine and masculine sexual responses were affected significantly by hormonal treatment. Mounting behavior in the test for aggression was activated by TP and by EB/DHTP. Lordosis and proceptive responses were inhibited in these groups as compared to EB-treated females, both in tests for aggression and in tests for sexual behavior. The results are consistent with the idea that dihydrotestosterone inhibits feminine and activates masculine sexual activity. The results also indicate that EB and DHTP synergistically activate aggression.  相似文献   

14.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone-filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system.  相似文献   

15.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone‐filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 502–510, 2003  相似文献   

16.
Groups of sexually inexperienced adult Clun Forest sheep (four animals per group) which had been castrated on the day after birth received one of the following treatments: testosterone propionate (TP, 20 mg/day); estradiol dipropionate (ODP, 2 mg/day); 19-hydroxy-17, 19-dipropionate (19HTP, 20 mg/day); dihydrotestosterone propionate (DHTP, 20 mg/day); or arachis oil vehicle (OIL). Treatments were in the form of sc injections given 5 days/week over a 6-week period during which time individual animals were observed in 18 tests for sexual behavior. The stimulus females used were ovariectomized ewes maintained in a state of continuous receptivity by daily injections of 15 mg of TP. Various measures of sexual and aggressive behavior were recorded during each test. Mounting was induced mainly in animals in the TP group and to a lesser extent in those receiving ODP. The extent to which precopulatory courtship was induced followed the order TP > ODP > 19HTP. Animals treated with DHTP or OIL showed negligible sexual activity.  相似文献   

17.
Some aspects of reproductive function in the GnRH-deficient hypogonadal (hpg) mutant mouse can be restored by transplanting normal fetal brain tissue containing GnRH cells into the central nervous system of adult hpg mice. However, hpg males showing physiological response to the graft fail to display sexual behavior and are infertile. We hypothesized that the reproductive deficit of these males is due to insufficient perinatal exposure to testicular androgens as a consequence of the GnRH deficiency. To test this hypothesis we androgenized hpg males by giving them neonatal injections of testosterone propionate (TP). Controls consisted of hpg males not androgenized neonatally and of normal males. All three groups received a TP implant in adulthood, and their copulatory behavior and reproductive capability were recorded. In addition, other hpg males, not androgenized neonatally, received fetal brain transplants containing GnRH neurons and were also tested for copulatory behavior and reproductive capability before and after receiving a TP implant. Three of 8 neonatally androgenized hpg males expressed the full repertoire of male sexual behavior, including intromission and ejaculation, and sired several litters. Three of 7 control hpg males that were not androgenized neonatally but received TP implants in adulthood also displayed mounting and intromission, but there was no evidence of ejaculation, and these males failed to impregnate normal females. Of the 8 hpg males that responded to a fetal transplant with testicular growth, only 1 displayed mounting behavior. However, when given a TP implant, 4 of 8 hpg males with grafts displayed mounting and intromissions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Gonadally intact pseudohermaphroditic female and normal female and neonatally castrated male rhesus monkeys were given estrogen treatment as adults and evaluated for attractivity, proceptivity, and receptivity during tests with a tethered stud male. Pseudohermaphrodites were produced by injecting their mothers during pregnancy with either testosterone propionate (TP) or dihydrotestosterone propionate (DHTP). Castrated males had reliably lower attractivity than normal females on all indicator responses shown by the tethered males. Additionally, castrated males showed reliably fewer proceptive responses on 4 of 5 measures than normal females. Receptivity could not be assessed in this situation for castrated males, because tethered males never contacted them unless the castrated males were displaying presentation. No reliable differences were observed between pseudohermaphrodites produced by prenatal treatments with TP or DHTP. Pseudohermaphrodites generally showed reliably less attractivity and proceptivity than normal females and reliably more of these traits than castrated males. Attractivity scores for pseudohermaphrodites were not different from those for normal females until proximity to the tethered male was established. Receptivity was not different in pseudohermaphrodites compared with normal females. Results indicate prenatal androgenization and its developmental sequelae lead to a defeminization in adulthood which, in this testing situation, was principally manifested by a deficiency in the performance of proceptive behaviors. Additionally, defeminization in rhesus monkeys, unlike that demonstrated in rodents, does not depend upon actions of an aromatizable androgen.  相似文献   

19.
Phoenix et al. (Phoenix, C., Goy, R., Gerall, A., Young, W., 1959. Organizing actions of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382.) were the first to propose an essential role of fetal testosterone exposure in the sexual differentiation of the capacity of mammals to display male-typical mating behavior. In one experiment control male and female guinea pigs as well as females given fetal testosterone actually showed equivalent levels of mounting behavior when gonadectomized and given ovarian steroids prior to adult tests with a stimulus female. This finding is discussed in the context of a recent, high-profile paper by Kimchi et al. (Kimchi, T., Xu, J., Dulac, C., 2007. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014.) arguing that female rodents possess the circuits that control the expression of male-typical mating behavior and that their function is normally suppressed in this sex by pheromonal inputs that are processed via the vomeronasal organ (VNO)-accessory olfactory nervous system. In another Phoenix et al. experiment, significantly more mounting behavior was observed in male guinea pigs and in females given fetal testosterone than in control females following adult gonadectomy and treatment with testosterone. Literature is reviewed that attempts to link sex differences in the anatomy and function of the accessory versus the main olfactory projections to the amygdala and hypothalamus to parallel sex differences in courtship behaviors, including sex partner preference, as well as the capacity to display mounting behavior.  相似文献   

20.
This study investigated the androgen specificity of aggressive and sexual behavior in the lizard Anolis carolinensis and the capacity of females of this species to exhibit male-typical copulation. Gonadectomized males and females were injected with testosterone propionate (TP) or dihydrotestosterone propionate (DHTP) or were implanted with Silastic tubing containing TP or DHTP. Either TP or DHTP activated male-typical sexual behavior in both males and females and activated aggressive behavior in males; DHTP activated aggressive behavior in females. Thus conversion of androgen to estrogen is not essential for these behavior patterns, and endogenous dihydrotestosterone may be important. TP but not DHTP stimulated receptivity in females, suggesting that conversion of testosterone to estrogen may underlie TP-stimulated receptivity. Females treated with TP did not differ from males in their display of male-typical courtship, neck-clasping, and intromission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号