首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaill F  Bouligand Y 《Tissue & cell》1987,19(5):625-642
The polychaete annelid Alvinella pompejana was discovered near the hydrothermal vents, recently explored in the Eastern Pacific Ocean. This worm is protected by a cuticle deeply transformed over certain areas of the body and some changes are due to the presence of a very special bacterial flora. The present work however deals mainly with the supercoiled collagen fibrils, which are well visualized in thin sections observed by transmission electron microscopy. This character strongly differentiates this species from other annelids and worms in general, the cuticle of which includes straight and apparently non-coiled collagen fibrils. This indicates that fibrils are extensible in Alvinella, possibly under physiological conditions, and that internal pressure and local volume variations are regulated according to principles which depart from what is recognized in other worms, where cuticular fibrils are considered as inextensible. Possible models of this cuticle are discussed and particularly aspects which show a relationship with certain liquid crystals. Very different factors may be involved in morphogenesis of such cuticles: microvilli distribution, self-assembly of collagen fibrils, mechanical constraints. An appendix recalls some classical data on worm cuticle geometry and presents an estimate of volume variations resulting from coiling of fibrils.  相似文献   

2.
3.
A unique community of bacteria colonizes the dorsal integument of the polychaete annelid Alvinella pompejana, which inhabits the high-temperature environments of active deep-sea hydrothermal vents along the East Pacific Rise. The composition of this bacterial community was characterized in previous studies by using a 16S rRNA gene clone library and in situ hybridization with oligonucleotide probes. In the present study, a pair of PCR primers (P94-F and P93-R) were used to amplify a segment of the dissimilatory bisulfite reductase gene from DNA isolated from the community of bacteria associated with A. pompejana. The goal was to assess the presence and diversity of bacteria with the capacity to use sulfate as a terminal electron acceptor. A clone library of bisulfite reductase gene PCR products was constructed and characterized by restriction fragment and sequence analysis. Eleven clone families were identified. Two of the 11 clone families, SR1 and SR6, contained 82% of the clones. DNA sequence analysis of a clone from each family indicated that they are dissimilatory bisulfite reductase genes most similar to the dissimilatory bisulfite reductase genes of Desulfovibrio vulgaris, Desulfovibrio gigas, Desulfobacterium autotrophicum, and Desulfobacter latus. Similarities to the dissimilatory bisulfite reductases of Thermodesulfovibrio yellowstonii, the sulfide oxidizer Chromatium vinosum, the sulfur reducer Pyrobaculum islandicum, and the archaeal sulfate reducer Archaeoglobus fulgidus were lower. Phylogenetic analysis separated the clone families into groups that probably represent two genera of previously uncharacterized sulfate-reducing bacteria. The presence of dissimilatory bisulfite reductase genes is consistent with recent temperature and chemical measurements that documented a lack of dissolved oxygen in dwelling tubes of the worm. The diversity of dissimilatory bisulfite reductase genes in the bacterial community on the back of the worm suggests a prominent role for anaerobic sulfate-reducing bacteria in the ecology of A. pompejana.  相似文献   

4.
A highly integrated, morphologically diverse bacterial community is associated with the dorsal surface of Alvinella pompejana, a polychaetous annelid that inhabits active high-temperature deep-sea hydrothermal vent sites along the East Pacific Rise (EPR). Analysis of a previously prepared bacterial 16S ribosomal DNA (rDNA) library identified a spirochete most closely related to an endosymbiont of the oligochete Olavius loisae. This spirochete phylotype (spirochete A) comprised only 2.2% of the 16S rDNA clone library but appeared to be much more dominant when the same sample was analyzed by denaturing gradient gel electrophoresis (DGGE) and the terminal restriction fragment length polymorphism procedure (12 to 18%). PCR amplification of the community with spirochete-specific primers used in conjunction with DGGE analysis identified two spirochete phylotypes. The first spirochete was identical to spirochete A but was present in only one A. pompejana specimen. The second spirochete (spirochete B) was 84.5% similar to spirochete A and, more interestingly, was present in the epibiont communities of all of the A. pompejana specimens sampled throughout the geographic range of the worm (13 degrees N to 32 degrees S along the EPR). The sequence variation of the spirochete B phylotype was less than 3% for the range of A. pompejana specimens tested, suggesting that a single spirochete species was present in the A. pompejana epibiotic community. Additional analysis of the environments surrounding the worm revealed that spirochetes are a ubiquitous component of high-temperature vents and may play an important role in this unique ecosystem.  相似文献   

5.
Due to their inherent stability, thermophilic bacteria and archaea serve as important resources for biochemical and biophysical analyses of many biological processes. Unfortunately, scientists characterizing eukaryote-specific processes, such as nuclear pre-mRNA splicing, are unable to take advantage of these sources of thermostable proteins. To identify and provide a source of thermostable eukaryotic proteins, we are characterizing splicing factors in the thermotolerant deep-sea vent polychaete, Alvinella pompejana. This worm, also known as the Pompeii worm, is found in the extreme environment of deep-sea hydrothermal vents, and is one of the most thermotolerant eukaryotic organisms known. We report on detailed analyses of U2AF65, the large subunit of the U2 small nuclear ribonucleoprotein auxiliary factor, an essential splicing factor important for intron definition and alternative splicing. The cloning and characterization of Pompeii U2AF65 show it is highly similar to human U2AF65 in sequence and function and is more thermostable than the human protein when bound to RNA in vitro. Notably, Pompeii U2AF65 can restore splicing in a human extract depleted of human U2AF. We also determine that the general splicing mechanisms and signal sequences are conserved in the Pompeii worm, an annelid which has previously been uncharacterized in terms of splicing factors and signals.  相似文献   

6.
Alvinella pompejana is a polychaetous annelid that inhabits high-temperature environments associated with active deep-sea hydrothermal vents along the East Pacific Rise. A unique and diverse epibiotic microflora with a prominent filamentous morphotype is found associated with the worm's dorsal integument. A previous study established the taxonomic positions of two epsilon proteobacterial phylotypes, 13B and 5A, which dominated a clone library of 16S rRNA genes amplified by PCR from the epibiotic microbial community of an A. pompejana specimen. In the present study deoxyoligonucleotide PCR primers specific for phylotypes 13B and 5A were used to demonstrate that these phylotypes are regular features of the bacterial community associated with A. pompejana. Assaying of other surfaces around colonies of A. pompejana revealed that phylotypes 13B and 5A are not restricted to A. pompejana. Phylotype 13B occurs on the exterior surfaces of other invertebrate genera and rock surfaces, and phylotype 5A occurs on a congener, Alvinella caudata. The 13B and 5A phylotypes were identified and localized on A. pompejana by in situ hybridization, demonstrating that these two phylotypes are, in fact, the prominent filamentous bacteria on the dorsal integument of A. pompejana. These findings indicate that the filamentous bacterial symbionts of A. pompejana are epsilon Proteobacteria which do not have an obligate requirement for A. pompejana.  相似文献   

7.
Two different collagens were isolated and characterized from the body walls of the vestimentiferan tube worm Riftia pachyptila and the annelid Alvinella pompejana, both living around hydrothermal vents at a depth of 2600 m. The acid-soluble cuticle collagens consisted of a long triple helix (2.4 microns for Alvinella, 1.5 microns for Riftia) terminating into a globular domain. Molecular masses of 2600 and 1700 kDa, respectively, were estimated from their dimensions. The two cuticle collagens were also quite different in amino acid composition, in agreement with their different supramolecular organizations within tissues. Interstitial collagens corresponding to cross-striated fibrils underneath the epidermal cells could be solubilized by digestion with pepsin and consisted of a single alpha-chain. They were similar in molecular mass (340 kDa) and length (280 nm) but differed in composition and banding patterns of segment-long-spacing fibrils. This implicates significant sequence differences also in comparison to fibril-forming vertebrate collagens, although all form typical quarter-staggered fibrils. The thermal stability of the worm collagens was, with one exception (interstitial collagen of Riftia), in the range of mammalian and bird collagens (37 to 46 degrees C), and thus distinctly above that of shallow sea water annelids. Yet, their 4-hydroxyproline contents were not directly correlated to this stability. About 20% of Riftia collagen alpha-chain sequence was elucidated by Edman degradation and showed typical Gly-X-Y repeats but only a limited homology (45 to 58% identity) to fibril-forming vertebrate collagens. A single triplet imperfection and the variable hydroxylation of proline in the X position were additional unique features. It suggests that this collagen represents an ancestral form of fibril-forming collagens not directly corresponding to an individual fibril-forming collagen type of vertebrates.  相似文献   

8.
The hemoglobin of the polychaete worm Alvinella pompejana was reconstructed at 20A resolution from frozen-hydrated samples observed by electron microscopy according to the random conical tilt series method. This three-dimensional reconstruction was mirror-inverted with respect to a previous volume published by de Haas et al. in 1996. In order to explain this handedness discrepancy, various 3D reconstructions using different reference volumes were carried out showing that the choice of the first volume was the keystone during the refinement process. The 3D reconstruction volume of A. pompejana Hb presented structural features characteristic of annelid Hbs with two hexagonal layers each comprising six hollow globular subassemblies and a complex of non-heme linker chains. Moreover, the eclipsed conformation of the two hexagonal layers and a HGS architecture similar to that described for Arenicola marina Hb led to the conclusion that A. pompejana Hb belonged to the architectural type II according to the definition of Jouan et al. (2001). A comparison between this cryo-EM volume and X-ray crystallography density maps of Lumbricus terrestris type-I Hb (Royer et al., 2000) showed that the triple stranded coiled coil structures of linker chains were different. Based on this observation, a model was proposed to explain the eclipsed conformation of the two hexagonal layers of type-II Hbs.  相似文献   

9.
Alvinella pompejana lives on the top of chimneys at deep-sea hydrothermal vents of the East Pacific Rise. It is thought to be one of the most thermotolerant and eurythermal metazoans. Our experimental approach combines methods of population genetics and biochemistry, considering temperature as a potential selective factor. Phosphoglucomutase (Pgm-1 locus) is one of the most polymorphic loci of A. pompejana and exhibits four alleles, from which alleles 90 and 100 dominate with frequencies of approximately 0.5 in populations. Results from previous studies suggested that allele 90 might be more thermostable than allele 100. Significant genetic differentiation was found by comparing contrasted microhabitats, especially the young, still hot, versus older and colder chimneys, with allele 90 being at highest frequency on young chimneys. Moreover the frequency of allele 90 was positively correlated with mean temperature at the opening of Alvinella tubes. In parallel, thermostability and thermal optimum experiments demonstrated that allele 90 is more thermostable and more active at higher temperatures than allele 100. This dataset supports an additive model of diversifying selection in which allele 90 is favoured on young hot chimneys but counterbalanced over the whole metapopulation by the dynamics of the vent ecosystem.  相似文献   

10.
The emblematic hydrothermal worm Alvinella pompejana is one of the most thermo tolerant animal known on Earth. It relies on a symbiotic association offering a unique opportunity to discover biochemical adaptations that allow animals to thrive in such a hostile habitat. Here, by studying the Pompeii worm, we report on the discovery of the first antibiotic peptide from a deep-sea organism, namely alvinellacin. After purification and peptide sequencing, both the gene and the peptide tertiary structures were elucidated. As epibionts are not cultivated so far and because of lethal decompression effects upon Alvinella sampling, we developed shipboard biological assays to demonstrate that in addition to act in the first line of defense against microbial invasion, alvinellacin shapes and controls the worm''s epibiotic microflora. Our results provide insights into the nature of an abyssal antimicrobial peptide (AMP) and into the manner in which an extremophile eukaryote uses it to interact with the particular microbial community of the hydrothermal vent ecosystem. Unlike earlier studies done on hydrothermal vents that all focused on the microbial side of the symbiosis, our work gives a view of this interaction from the host side.  相似文献   

11.
The annelid Alvinella pompejana is probably the most heat-tolerant metazoan organism known. Previous results have shown that the level of thermal stability of its interstitial collagen is significantly greater than that of coastal annelids and of vent organisms, such as the vestimentiferan Riftia pachyptila, living in colder parts of the deep-sea hydrothermal environment. In order to investigate the molecular basis of this thermal behavior, we cloned and sequenced a large cDNA molecule coding the fibrillar collagen of Alvinella, including one half of the helical domain and the entire C-propeptide domain. For comparison, we also cloned the 3' part of the homologous cDNA from Riftia. Comparison of the corresponding helical domains of these two species, together with that of the previously sequenced domain of the coastal lugworm Arenicola marina, showed that the increase in proline content and in the number of stabilizing triplets correlate with the outstanding thermostability of the interstitial collagen of A. pompejana. Phylogenetic analysis showed that triple helical and the C-propeptide parts of the same collagen molecule evolve at different rates, in favor of an adaptive mechanism at the molecular level.  相似文献   

12.
A non-covalent globin subassembly comprising 12 globin chains (204 to 214 kDa) was observed directly by electrospray ionization time-of-flight mass spectrometry in the native hexagonal bilayer hemoglobins from the oligochaetes Lumbricus terrestris and Tubifex tubifex, the polychaetes Tylorrhynchus heterochaetus, Arenicola marina, Amphitrite ornata and Alvinella pompejana, the leeches Macrobdella decora, Haemopis grandis and Nephelopsis oscura and the chlorocruorin from the polychaete Myxicola infundibulum, over the pH range 3.5-7.0. The Hb from the deep-sea polychaete Alvinella exhibited in addition, peaks at approximately 107 kDa and at approximately 285 kDa, which were assigned to subassemblies of six globin chains and of 12 globin chains with three non-globin linker chains, respectively. The experimental masses decreased slightly with increased de-clustering potential (60 to 160 V) and were generally 0.1 to 0.2 % higher than the calculated masses, due probably to complexation with cations and water molecules.  相似文献   

13.
A 3D reconstruction at 25 A resolution of native hemoglobin of the polychaete worm Arenicola marina was carried out from frozen-hydrated specimens examined in the electron microscope. The reconstruction volume of this large extracellular multimeric respiratory pigment appears as a hexagonal bilayer structure with eclipsed vertices in its upper and lower hexagonal layers. Conversely, in hemoglobins of oligochaetes, achaetes, and vestimentiferans and in chlorocruorins of the Sabellidae (polychaete) family, the vertices of the upper layer are 16 degrees clockwise rotated with respect to those of the lower layer. The fact that two other polychaete hemoglobins (Alvinella pompejana and Tylorrhynchus heterochaetus) have the same architecture as Arenicola led us to define two types of hexagonal bilayer hemoglobins/chlorocruorins: (i) type-I present in oligochaete, achaete, and vestimentiferan hemoglobins and in Sabellidae chlorocruorins; and (ii) type-II present in polychaete hemoglobins. A comparative study of the hemoglobins of Lumbricus terrestris (type-I) and Arenicola marina (type-II) showed that only two small differences located in the c4 and c5 linking units are responsible of the important architectural difference present in oligomers. A likely scheme proposed to explain the phylogenic distribution of the two types suggests that Clitellata, Sabellida (polychaete), and vestimentiferan hemoglobins and chlorocruorins derive from a type-I ancestral molecule, while Terebellida (Alvinella), Phyllodocida (Tylorrhynchus), and Scolecida (Arenicola) and possibly other polychaetes derive from an ancestor molecule with type-II hemoglobin. The architectures of the hollow globular substructures are highly similar in Arenicola and Lumbricus hemoglobins, with 12 globin chains and three linking units (c3a, c3b, and c4). The central piece of Arenicola hemoglobin is an ellipsoid while that of Lumbricus is a toroid. No phylogenic correlation could be found between the structure of the central pieces and the architecture type.  相似文献   

14.
Seven new species of limpets from hydrothermal vents are described in five new genera in the new family Peltospiridae (new superfamily Peltospiracea). Limpets in this family are known only from the hydrothermal vent community at two sites, near 21°N and 13°N, on the East Pacific Rise. New genera and species are: Peltospira , type species P. operculuta from both sites, and P. delicata from 13°N; Nodopelta , type species N. heminoda from both sites, and N. subnoda from 13°N; Rhynchopelta , type species R. concentrica from both sites; Echinopelta , type species E. fistulosa from 21°N; Hirtopelta , type specics H. hirta from 13°N. These limpets are associated with the Pompei worm Alvinella , except for Rhynchopelta, which is associated with the vestimentifcran worm Riftia .  相似文献   

15.
Alvinellid polychaete worms form multilayered organic tubes in the hottest and most rapidly growing areas of deep‐sea hydrothermal vent chimneys. Over short periods of time, these tubes can become entirely mineralized within this environment. Documenting the nature of this process in terms of the stages of mineralization, as well as the mineral textures and end products that result, is essential for our understanding of the fossilization of polychaetes at hydrothermal vents. Here, we report in detail the full mineralization of Alvinella spp. tubes collected from the East Pacific Rise, determined through the use of a wide range of imaging and analytical techniques. We propose a new model for tube mineralization, whereby mineralization begins as templating of tube layer and sublayer surfaces and results in fully mineralized tubes comprised of multiple concentric, colloform, pyrite bands. Silica appeared to preserve organic tube layers in some samples. Fine‐scale features such as protein fibres, extracellular polymeric substances and two types of filamentous microbial colonies were also found to be well preserved within a subset of the tubes. The fully mineralized Alvinella spp. tubes do not closely resemble known ancient hydrothermal vent tube fossils, corroborating molecular evidence suggesting that the alvinellids are a relatively recent polychaete lineage. We also compare pyrite and silica preservation of organic tissues within hydrothermal vents to soft tissue preservation in sediments and hot springs.  相似文献   

16.
Population genetic and phylogenetic analyses of mitochondrial COI from five deep-sea hydrothermal vent annelids provided insights into their dispersal modes and barriers to gene flow. These polychaetes inhabit vent fields located along the East Pacific Rise (EPR) and Galapagos Rift (GAR), where hundreds to thousands of kilometers can separate island-like populations. Long-distance dispersal occurs via larval stages, but larval life histories differ among these taxa. Mitochondrial gene flow between populations of Riftia pachyptila, a siboglinid worm with neutrally buoyant lecithothrophic larvae, is diminished across the Easter Microplate region, which lies at the boundary of Indo-Pacific and Antarctic deep-sea provinces. Populations of the siboglinid Tevnia jerichonana are similarly subdivided. Oasisia alvinae is not found on the southern EPR, but northern EPR populations of this siboglinid are subdivided across the Rivera Fracture Zone. Mitochondrial gene flow of Alvinella pompejana, an alvinellid with large negatively buoyant lecithotrophic eggs and arrested embryonic development, is unimpeded across the Easter Microplate region. Gene flow in the polynoid Branchipolynoe symmytilida also is unimpeded across the Easter Microplate region. However, A. pompejana populations are subdivided across the equator, whereas B. symmitilida populations are subdivided between the EPR and GAR axes. The present findings are compared with similar evidence from codistributed species of annelids, molluscs and crustaceans to identify potential dispersal filters in these eastern Pacific ridge systems.  相似文献   

17.
Alvinella pompejana is a polychaetous annelid that inhabits active deep-sea hydrothermal vent sites along the East Pacific Rise, where it colonizes the walls of actively venting high-temperature chimneys. An abundant, morphologically diverse epibiotic microflora is associated with the worm's dorsal integument, with a highly integrated filamentous morphotype clearly dominating the microbial biomass. It has been suggested that this bacterial population participates in either the nutrition of the worm or in detoxification of the worm's immediate environment. The primary goal of this study was to phylogenetically characterize selected epibionts through the analysis of 16S rRNA gene sequences. Nucleic acids were extracted from bacteria collected from the dorsal surface of A. pompejana. 16S rRNA genes were amplified with universal bacterial primers by the PCR. These genes were subsequently cloned, and the resulting clone library was screened by restriction fragment length polymorphism analysis to identify distinct clone types. The restriction fragment length polymorphism analysis identified 32 different clone families in the library. Four of these families were clearly dominant, representing more than 65% of the library. Representatives from the four most abundant clone families were chosen for complete 16S rRNA gene sequencing and phylogenetic analysis. These gene sequences were analyzed by a variety of phylogenetic inference methods and found to be related to the newly established epsilon subdivision of the division Proteobacteria. Secondary structural model comparisons and comparisons of established signature base positions in the 16S rRNA confirmed the placement of the Alvinella clones in the epsilon subdivision of the Proteobacteria.  相似文献   

18.
F Talmont  B Fournet 《FEBS letters》1991,281(1-2):55-58
The tube of Alvinella pompejana contains in its carbohydrate fraction, 3 methylated monosaccharides: 2-mono-O-methyl-L-fucose, 3-mono-O-methyl-L-fucose and 2,4-di-O-methyl-L-fucose. The present work appears to be the first report of the occurrence of 2-mono-O-methyl-L-fucose and 3-mono-O-methyl-L-fucose in the animal kingdom. Moreover, it is the first time that 2,4-di-O-methyl-L-fucose is found in nature.  相似文献   

19.
Following previous analysis of the structure of Alvinella pompejana heaxagonal-bilayer haemoglobin (HBL Hb) [1], we report in this paper the structure of three other HBL Hbs belonging to Alvinella caudata, Paralvinella grasslei and Paralvinella palmiformis, members of the Alvinellidae, annelid family strictly endemic to deep-sea hydrothermal vents located on the ridge crests in the Pacific ocean. The multi-angle laser light scattering (MALLS) and fast protein liquid chromatography (FPLC) analysis revealed a broad range of molecular masses for the extracellular Hb molecules, 3517 +/- 14 kDa (A. caudata), 3822 +/- 28 kDa (P. grasslei) and 3750 +/- 150 kDa (P. palmiformis). Native and derivative Hbs (reduced, carbamidomethylated and deglycosylated) were analysed by electrospray ionization mass spectroscopy (ESI-MS) and the data was processed by the maximum entropy deconvolution system (MaxEnt). The most important difference between alvinellid HBL Hbs was the variation in their composition, from two to four monomeric globin chains, and from one to four linker chains. Therefore, despite the fact that all these species belong to a single family, notable differences in the polypeptide chain composition of their HBL Hbs were observed, probably accounting for their different functional properties as previously reported by this group Toulmond, A., El Idrissi Slitine, F., De Frescheville, J. & Jouin, C. (1990) Biol. Bull. 179, 366-373.  相似文献   

20.
Alvinella pompejana is a tubicolous polychaete that dwells in the hottest part of the hydrothermal vent ecosystem in a highly variable mixture of vent (350 degrees C, anoxic, CO(2)- and sulfide-rich) and deep-sea (2 degrees C, mildly hypoxic) waters. This species has developed distinct-and specifically respiratory-adaptations to this challenging environment. An internal gas exchange system has recently been described, along with the report of an intracellular coelomic hemoglobin, in addition to the previously known extracellular vascular hemoglobin. This article reports the structure of coelomic hemoglobin and the functional properties of both hemoglobins in order to assess possible oxygen transfer. Coelomocytes contain a unique monomeric hemoglobin with a molecular weight of 14,810+/-1.5 Da, as determined by mass spectrometry. The functional properties of both hemoglobins are unexpectedly very similar under the same conditions of pH (6.1-8.2) and temperature (10 degrees -40 degrees C). The oxygen affinity of both proteins is relatively high (P50=0.66 Torr at 20 degrees C and pH 7), which facilitates oxygen uptake from the hypoxic environment. A strong Bohr effect (Phi ranging from -0.8 to -1.0) allows the release of oxygen to acidic tissues. Such similar properties imply a possible bidirectional transfer of oxygen between the two hemoglobins in the perioesophagal pouch, a mechanism that could moderate environmental variations of oxygen concentration and maintain brain oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号