首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
High mammalian gene expression was obtained for more than twenty different proteins in different cell types by just a few laboratory scale stable gene transfections for each protein. The stable expression vectors were constructed by inserting a naturally-occurring 1.006 kb or a synthetic 0.733 kb DNA fragment (including intron) of extremely GC-rich at the 5′ or/and 3′ flanking regions of these protein genes or their gene promoters. This experiment is the first experimental evidence showing that a non-coding extremely GC-rich DNA fragment is a super “chromatin opening element” and plays an important role in mammalian gene expression. This experiment has further indicated that chromatin-based regulation of mammalian gene expression is at least partially embedded in DNA primary structure, namely DNA GC-content.  相似文献   

2.
Protein phosphorylation is well established as a regulatory mechanism in higher plants, but only a handful of plant enzymes are known to be regulated in this manner, and relatively few plant protein kinases have been characterized. AMP-activated protein kinase regulates key enzymes of mammalian fatty acid, sterol and isoprenoid metabolism, including 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. We now show that there is an activity in higher plants which, by functional criteria, is a homologue of the AMP-activated protein kinase, although it is not regulated by AMP. The plant kinase inactivates mammalian HMG-CoA reductase and acetyl-CoA carboxylase, and peptide mapping suggests that it phosphorylates the same sites on these proteins as the mammalian kinase. However, with the target enzymes purified from plant sources, it inactivates HMG-CoA reductase but not acetyl-CoA carboxylase. The kinase is located in the soluble, and not the chloroplast, fraction of leaf cells, consistent with the idea that it regulates HMG-CoA reductase, and hence isoprenoid biosynthesis, in vivo. The plant kinase also appears to be part of a protein kinase cascade which has been highly conserved during evolution, since the kinase is inactivated and reactivated by mammalian protein phosphatases (2A or 2C) and mammalian kinase kinase, respectively. This contrasts with the situation for many other mammalian protein kinases involved in signal transduction, which appear to have no close homologue in higher plants. To our knowledge, this represents the first direct evidence for a protein kinase cascade in higher plants.  相似文献   

3.
Vasotocin-associated neurophysin (MSEL-neurophysin) has been purified from goose neurohypophysis through molecular sieving and high-pressure reverse-phase liquid chromatography (HPLC). The protein has a molecular mass (measured by SDS-polyacrylamide gel electrophoresis) of 17 kDa in contrast to 10 kDa found for the mammalian MSEL-neurophysins. Complete amino acid sequence (131 residues) has been determined mainly through tryptic or staphylococcal proteinase peptides derived from carboxyamidomethylated neurophysin, isolated by HPLC and microsequenced. N- and C-terminal sequences have been established by Edman degradation or action of carboxypeptidase Y, respectively, applied on the native protein. Goose MSEL-neurophysin is homologous to the two-domain "big" MSEL-neurophysin previously identified in the frog. It appears that in non-mammalian tetrapods, namely birds and amphibians, the proteolytic processing of the pro-vasotocin involves only one cleavage, releasing the hormone moiety and a "big" neurophysin with two domains homologous to mammalian MSEL-neurophysin and copeptin, respectively. Comparison of the avian protein with its mammalian and amphibian counterparts reveals that the first half of the polypeptide chain is evolutionarily much less variable than the second and that the goose protein resembles the frog protein much more than the mammalian one.  相似文献   

4.
Shuttling of proteins between nucleus and cytoplasm in mammalian cells is facilitated by the presence of nuclear localization signals (NLS) and nuclear export signals (NES), respectively. However, we have found that Tus, an E. coli replication fork arresting protein, contains separate sequences that function efficiently as NLS and NES in mammalian cell lines, as judged by cellular location of GFP-fusion proteins. The NLS was localized to a short stretch of 9 amino acids in the carboxy-terminus of Tus protein. Alterations of any of these basic amino acids almost completely abolished the nuclear targeting. The NES comprises a cluster of leucine/hydrophobic residues located within 21 amino acids at the amino terminus of Tus. Finally, we have shown that purified GFP-Tus fusion protein or GFP-Tus NLS fusion protein, when added to the culture media, was internalized very efficiently into mammalian cells. Thus, Tus is perhaps the first reported bacterial protein to possess both NLS and NES, and has the capability to transduce protein into mammalian cells.  相似文献   

5.
Biological timekeeping is determined by internal temporal programmes and the resetting of these programmes or clocks by external stimuli. Many of the core genes of the mammalian daily or circadian clock are known, but the factors regulating so-called 'clock' gene proteins are unclear. In this issue of the Biochemical Journal, Gallego and colleagues show for the first time that protein phosphatase 1 plays a major role in the stability of mammalian PER2, a key protein in the core clock works. This contrasts somewhat with circadian rhythm control in the fruitfly Drosophila and the fungus Neurospora where current evidence supports a role for protein phosphatase 2A in core timekeeping. The mechanisms underpinning these actions of phosphatase 1 are unclear, and future investigations will need to identify the regulatory subunit that targets phosphatase 1 to mammalian PER2 (Period 2).  相似文献   

6.
The existence of protein kinases, known as histidine kinases, which phosphorylate their substrates on histidine residues has been well documented in bacteria and also in lower eukaryotes such as yeast and plants. Their biological roles in cellular signalling pathways within these organisms have also been well characterised. The evidence for the existence of such enzymes in mammalian cells is much less well established and little has been determined about their cellular functions. The aim of the current review is to present a summary of what is known about mammalian histidine kinases. In addition, by consideration of the chemistry of phosphohistidine, what is currently known of some mammalian histidine kinases and the way in which they act in bacteria and other eukaryotes, a general role for mammalian histidine kinases is proposed. A histidine kinase phosphorylates a substrate protein, by virtue of the relatively high free energy of hydrolysis of phosphohistidine the phosphate group is easily transferred to either a small molecule or another protein with which the phosphorylated substrate protein specifically interacts. This allows a signalling process to occur, which may be downregulated by the action of phosphatases. Given the known importance of protein phosphorylation to the regulation of almost all aspects of cellular function, the investigation of the largely unexplored area of histidine phosphorylation in mammalian cells is likely to provide a greater understanding of cellular action and possibly provide a new set of therapeutic drug targets.  相似文献   

7.
Baculoviral-mediated expression in insect cells has become a method of choice where high-level protein expression is desired and where expression in Escherichia coliform (E. coli.) is unsuitable. Genes of interest are inserted into the baculoviral genome of Autographa californica nuclear polyhedrosis virus (AcNPV) under the extremely strong, but very late polyhedron gene (PolH). The preferred host lines are derived from Spodoptera frugiperda (Sf9 or Sf21) or Tricoplusia ni (High Five, Invitrogen). Viral expression in insect cells is commonly used in the signal transduction field, due to the more than satisfactory capacity to express membrane proteins. However, co-association and/or co-purification of contaminating endogenous host G protein subunits, for example, may potentially threaten the functional and structural homogeneity of membrane preparations. The undefined G protein composition is complicated by the limited sequence data of either the S. frugiperda or Tricoplusia ni genomes. Here we report the isolation of cDNAs encoding two members of the heterotrimeric G protein family, Gbeta (Tn-Gbeta) and Ggamma (Tn-Ggamma), from Tricoplusia ni. Tn-Gbeta shares approximately 90% amino acid sequence identity with Gbeta from Drosophila melanogaster and 84% identity with mammalian Gbeta (human Gbeta1). Tn-Ggamma shares approximately 71% amino acid identity with D. melanogaster Ggamma1 and 42% identity with mammalian Ggamma (human Ggamma2). Tn-Gbetagamma is also functionally similar to mammalian Gbeta1gamma2 by virtue of their capacity to form a complex with mammalian Galpha subunits, support G-protein-dependent agonist binding to a mammalian G protein-coupled receptor (beta2-adrenergic receptor) and directly regulate effectors such as adenylyl cyclase.  相似文献   

8.
Production of secreted mammalian proteins for structural and biophysical studies can be challenging, time intensive, and costly. Here described is a time and cost efficient protocol for secreted protein expression in mammalian cells and one step purification using nickel affinity chromatography. The system is based on large scale transient transfection of mammalian cells in suspension, which greatly decreases the time to produce protein, as it eliminates steps, such as developing expression viruses or generating stable expressing cell lines. This protocol utilizes cheap transfection agents, which can be easily made by simple chemical modification, or moderately priced transfection agents, which increase yield through increased transfection efficiency and decreased cytotoxicity. Careful monitoring and maintaining of media glucose levels increases protein yield. Controlling the maturation of native glycans at the expression step increases the final yield of properly folded and functional mammalian proteins, which are ideal properties to pursue X-ray crystallography. In some cases, single step purification produces protein of sufficient purity for crystallization, which is demonstrated here as an example case.  相似文献   

9.
Both Xenopus laevis oocytes and mammalian cells are widely used for heterologous expression of several classes of proteins, and membrane proteins especially, such as ion channels or receptors, have been extensively investigated in both cell types. A full characterization of a specific protein will often engage both oocytes and mammalian cells. Efficient expression of a protein in both systems have thus far only been possible by subcloning the cDNA into two different vectors because several different molecular requirements should be fulfilled to obtain a high protein level in both mammalian cells and oocytes. To address this problem, we have constructed a plasmid vector, pXOOM, that can function as a template for expression in both oocytes and mammalian cells. By including all the necessary RNA stability elements for oocyte expression in a standard mammalian expression vector, we have obtained a dual-function vector capable of supporting protein production in both Xenopus oocytes and CHO-K1 cells at an expression level equivalent to the levels obtained with vectors optimized for either oocyte or mammalian expression. Our functional studies have been performed with hERGI, KCNQ4, and Kv1.3 potassium channels.  相似文献   

10.
The signal peptide of the outer membrane lipoprotein (OMLP) of Escherichia coli was shown to be capable of promoting protein translocation across mammalian microsomal membranes in vitro. We assayed translocation of a fusion protein containing the OMLP signal peptide and nine amino acids of OMLP fused in frame to beta-lactamase. The efficiency with which the mammalian translocation machinery recognizes and accepts the OMLP signal peptide as substrate is indistinguishable from that of mammalian secretory proteins. Upon translocation mammalian signal peptidase processes the pre-OMLP-beta-lactamase protein at different sites than are utilized in vivo by E. coli OMLP signal peptidase (signal peptidase II) but that can be predicted as mammalian signal peptidase cleavage sites. Mutants in the OMLP signal peptide were tested for their ability to promote translocation of the fusion protein in this assay system. It has been shown previously that mutants in the positively charged amino acids at the amino terminus of the signal peptide severely delay the translocation of OMLP in vivo in E. coli. However, these mutants had no detectable effect either on signal recognition by mammalian signal recognition particle or on the efficiency of translocation itself.  相似文献   

11.
The first step in the secretion of most mammalian proteins is their transport into the lumen of the endoplasmic reticulum (ER). Transport of pre-secretory proteins into the mammalian ER requires signal peptides in the precursor proteins and a protein translocase in the ER membrane. In addition, hitherto unidentified lumenal ER proteins have been shown to be required for vectorial protein translocation. This requirement was confirmed in this study by using proteoliposomes that were made from microsomal detergent extracts and contained either low or high concentrations of lumenal ER proteins. Furthermore, immunoglobulin-heavy-chain-binding protein (BiP) was shown to be able to substitute for the full set of lumenal proteins and, in the case of biotinylated precursor proteins, avidin was found to be able to substitute for lumenal proteins. Thus, the polypeptide-chain-binding protein BiP was identified as one lumenal protein that is involved in efficient vectorial protein translocation into the mammalian ER.  相似文献   

12.
13.
Acetyl-CoA carboxylase (ACC) is regulated in mammalian tissues, in part, by multisite enzyme phosphorylation. Yeast ACC (Y-ACC) has been highly purified from S. cerevisiae by monomeric avidin-Sepharose chromatography, revealing an enzyme subunit species of molecular mass 265,000 Da. Unlike mammalian enzyme, Y-ACC is citrate-independent, and reacts weakly or not at all with a panel of anti-rat liver ACC antibodies. Like rat ACC, Y-ACC is rapidly phosphorylated and inactivated by two mammalian carboxylase kinases, the cAMP-dependent protein kinase and 5'-AMP-stimulated kinase. It is also phosphorylated by rat liver casein kinase II, but without any change in catalytic activity. Three major yeast protein kinases active on ACC have been fractionated; all co-elute with kinases active on casein, but each appears to be a distinct catalytic species. Like the mammalian casein kinases, however, phosphorylation of ACC by these yeast kinases does not alter yeast ACC activity. Taken together, these data indicate that Y-ACC possesses at least two classes of phosphorylation sites, one or more of which acutely regulates enzyme activity. Alterations in Y-ACC phosphorylation in yeast, as in mammalian tissues, could be an important modulator of the rates of fatty acid synthesis.  相似文献   

14.
Mutations introduced to wild-type proteins naturally, or intentionally via protein engineering, often lead to protein aggregation. In particular, protein aggregation within mammalian cells has significant implications in the disease pathology and biologics production; making protein aggregation modulation within mammalian cells a very important engineering topic. Previously, we showed that the semi-rational design approach can be used to reduce the intracellular aggregation of a protein by recovering the conformational stability that was lowered by the mutation. However, this approach has limited utility when no rational design approach to enhance conformational stability is readily available. In order to overcome this limitation, we investigated whether the modification of residues significantly displaced upon the original mutation is an effective way to reduce protein aggregation in mammalian cells. As a model system, human copper, zinc superoxide dismutase mutant containing glycine to alanine mutation at position 93 (SOD1G93A) was used. A panel of mutations was introduced into residues substantially displaced upon the G93A mutation. By using cell-based aggregation assays, we identified several novel variants of SOD1G93A with reduced aggregation propensity within mammalian cells. Our findings successfully demonstrate that the aggregation of a mutant protein can be suppressed by mutating the residues significantly displaced upon the original mutation.  相似文献   

15.
Highly purified rat and cow brain synaptic vesicles contain major proteins with molecular weights of approximately 74,000, 60,000, 57,000, 40,000, 38,000, and 34,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The presence of the major proteins on synaptic vesicles was confirmed by immunoprecipitation of intact rat brain synaptic vesicles with a synaptic vesicle-specific monoclonal antibody. The 40,000-Mr protein appeared to be identical to the 38,000-Mr integral membrane glycoprotein, p38 or synaptophysin, previously identified as a major component of mammalian synaptic vesicles. The isoelectric point of the 75,000-Mr proteins from either rat or cow brain synaptic vesicles is 5.0, and the pI of the 57,000-Mr protein is approximately 5.1 in both species. The similarity in size and charge of several major proteins in rat and cow synaptic vesicles suggests a high degree of structure conservation of these proteins in diverse mammalian species and raises the possibility that a set of functions common to most or all mammalian synaptic vesicles is mediated by these proteins.  相似文献   

16.
Despite high sequence identity among mammalian prion proteins (PrPs), mammals have varying rates of susceptibility to prion disease resulting in a so-called species barrier. The species barrier follows no clear pattern, with closely related species or similar sequences being no more likely to infect each other, and remains an unresolved enigma. Variation of the conformationally flexible regions may alter the thermodynamics of the conformational change, commonly referred to as the conformational conversion, which occurs in the pathogenic process of the mammalian prion protein. A conformational ensemble scenario is supported by the species barrier in prion disease and evidence that there are strains of pathogenic prion with different conformations within species. To study how conformational flexibility has evolved in the prion protein, an investigation was undertaken on the evolutionary dynamics of structurally disordered regions in the mammalian prion protein, non-mammalian prion protein that is not vulnerable to prion disease, and remote homologs Doppel and Shadoo. Structural disorder prediction analyzed in an evolutionary context revealed that the occurrence of increased or altered conformational flexibility in mammalian PrPs coincides with key events among PrP, Doppel, and Shadoo. Comparatively rapid evolutionary dynamics of conformational flexibility in the prion protein suggest that the species barrier is not a static phenomenon. A small number of amino acid substitutions can repopulate the conformational ensemble and have a disproportionately large effect on pathogenesis.  相似文献   

17.
Filamin is a well-characterized actin-associated protein first isolated from chicken smooth muscle. Subsequently, this polypeptide and its nonmuscle homolog actin-binding protein have been shown to be expressed in avian muscle tissue, mammalian smooth muscle, mammalian macrophages and other blood cell types, as well as several cultured cell lines. In this report, the occurrence of this polypeptide in adult mammalian organs has been investigated. Immunoblot analysis using three anti-filamin monoclonal antibodies showed that this protein was largely detected in adult rat organs that possess a substantial smooth muscle component. Furthermore, the limited expression of filamin in smooth muscle tissue was corroborated by immunohistochemical analysis. In contrast to avian systems, filamin was never found in detectable quantities in either mammalian cardiac or skeletal muscle. Quantitative immunoblot analysis demonstrated that filamin amounts roughly correlated with the abundance of the smooth muscle component of a given organ, comprising as much as 16.5% of the total SDS-extractable protein in bovine aorta. Work in avian systems and cells in culture has suggested that filamin is a rather ubiquitous cytoskeletal element. By contrast, this work demonstrates that filamin is highly restricted in its expression in mammalian organ systems, in situ.  相似文献   

18.
Abstract: Myelin isolated from the central nervous system of Xenopus tadpoles was characterized biochemically and compared with Xenopus frog and mammalian myelins. Xenopus tadpole myelin contains the characteristic protein and lipid components of mammalian myelin, although quantitative differences exist. The biochemical composition of Xenopus tadpole myelin suggests that it is an immature form of XePnopus frog myelin. Basic protein and proteolipid protein are prominent components of Xenopus myelin, but isolated tadpole myelin contains a greater proportion of higher molecular weight proteins than Xenopus frog or mature mammalian myelin. The basic protein has a higher apparent molecular weight than mammalian myelin basic protein. The levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase are significantly higher in whole tadpole brain homogenate and purified myelin than in similar mammalian preparations. Tadpole myelin lipids contain a higher proportion of phospholipids and less galactolipid than mammalian myelin. Tadpole myelin galactolipids include a high (16%) percentage of monogalactosyl diglyceride, a component found in only trace quantities (0.9%) in bovine myelin.  相似文献   

19.
Guo J  Hui DJ  Merrick WC  Sen GC 《The EMBO journal》2000,19(24):6891-6899
We report a new pathway of translation regulation that may operate in interferon-treated or virus-infected mammalian cells. This pathway is activated by P56, a protein whose synthesis is strongly induced by interferons or double-stranded RNA. Using a yeast two-hybrid screen, we identified the P48 subunit of the mammalian translation initiation factor eIF-3 as a protein that interacts with P56. The P56-P48 interaction was confirmed in human cells by co-immunoprecipitation assays and confocal microscopy. Gel filtration assays revealed that P56 binds to the large eIF-3 complex that contains P48. Purified recombinant P56 inhibited in vitro translation of reporter mRNAs in a dose-dependent fashion, and that inhibition was reversed by the addition of purified eIF-3. In vivo, expression of transfected P56 or induction of the endogenous P56 by interferon caused an inhibition of overall cellular protein synthesis and the synthesis of a transfected reporter protein. As expected, a P56 mutant that does not interact with P48 and eIF-3 failed to inhibit protein synthesis in vitro and in vivo.  相似文献   

20.
Cultured mammalian cells, particularly Chinese hamster ovary (CHO) cells, are widely exploited as hosts for the production of recombinant proteins, but often yields are limiting. Such limitations may be due in part to the misfolding and subsequent degradation of the heterologous proteins. Consequently we have determined whether transiently co‐expressing yeast and/or mammalian chaperones that act to disaggregate proteins, in CHO cell lines, improve the levels of either a cytoplasmic (Fluc) or secreted (Gluc) form of luciferase or an immunoglobulin IgG4 molecule. Over‐expression of the yeast ‘protein disaggregase’ Hsp104 in a CHO cell line increased the levels of Fluc more significantly than for Gluc although levels were not further elevated by over‐expression of the yeast or mammalian Hsp70/40 chaperones. Over‐expression of TorsinA, a mammalian protein related in sequence to yeast Hsp104, but located in the ER, significantly increased the level of secreted Gluc from CHO cells by 2.5‐fold and to a lesser extent the secreted levels of a recombinant IgG4 molecule. These observations indicate that the over‐expression of yeast Hsp104 in mammalian cells can improve recombinant protein yield and that over‐expression of TorsinA in the ER can promote secretion of heterologous proteins from mammalian cells. Biotechnol. Bioeng. 2010; 105: 556–566. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号