首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Cell type-dependent expression of tubulins in Physarum   总被引:19,自引:7,他引:12       下载免费PDF全文
Three alpha-tubulins and two beta-tubulins have been resolved by two-dimensional gel electrophoresis of whole cell lysates of Physarum myxamoebae or plasmodia. Criteria used to identify the tubulins included migration on two-dimensional gels with myxamoebal tubulins purified by self-assembly into microtubules in vitro, peptide mapping with Staphylococcus V8 protease and with chymotrypsin, immunoprecipitation with a monoclonal antibody specific for beta-tubulin, and, finally, hybrid selection of specific mRNA by cloned tubulin DNA sequences, followed by translation in vitro. Differential expression of the Physarum tubulins was observed. The alpha 1- and beta 1-tubulins were detected in both myxamoebae and plasmodia; alpha 2 and beta 2 were detected only in plasmodia, alpha 3 was detected only in the myxamoebal phase, and may be specific to the flagellate. Observation of more tubulin species in plasmodia than in myxamoebae was remarkable; the only microtubules detected in plasmodia are those of the mitotoic spindle, whereas myxamoebae display cytoplasmic, centriolar, flagellar, and mitotic-spindle microtubules. In vitro translation of myxamoebal and plasmodial RNAs indicated that there are distinct mRNAs, and therefore probably separate genes, for the alpha 1-, alpha 2-, beta 1-, and beta 2-tubulins. Thus, the different patterns of tubulin expression in myxamoebae and plasmodia reflect differential expression of tubulin genes.  相似文献   

2.
M. Glyn  K. Gull 《Protoplasma》1990,158(3):130-141
Summary The transformation ofPhysarum polycephalum flagellates to myxamoebae is characterised by disappearance of the flagellum. This transition, from the flagellate to the myxamoeba was observed by phase contrast light microscopy and recorded by time lapse video photography to determine whether flagellates shed their flagella or they are absorbed within the cell. In addition, the kinetics of flagellum disappearance were also studied. Our observations indicate that the flagellum was absorbed within the cell; the process occurred within seconds. Flagellum resorbtion was preceded by typical morphological cell changes. The shape of the nucleus altered and its mobility within the cell decreased. It was not possible to observe the flagellum within the cell with phase contrast video recordings. Thin section electron microscopy was used to study this intracellular phenomenon. Several stages of flagellum dissolution could be identified within the cell. The two most important stages were: an axoneme surrounded by the flagellar membrane within a plasma membrane lined pocket or vacuole and the naked axoneme without its membrane, free within the cell cytoplasm. The existence of cytoplasmic microtubules prevented identification of any further dissolution stages of the flagellum. A group of microtubules adjacent to the flagellum but within the cytoplasm was observed in flagellates and also in those cells which possesed enveloped axonemes. The flagellum did not dissociate from the kinetosomes before resorbtion.Immunofluorescence studies with the 6-11-B-1 monoclonal antibody indicated that acetylated microtubules exist in myxamoebae after transformation from flagellates for up to 40 min. Acetylated tubulin is not limited to the centrioles in these cells.  相似文献   

3.
We have used a panel of monoclonal antibodies in a study of the expression of multiple tubulins in Physarum polycephalum. Three anti-beta-tubulin monoclonal antibodies, DM1B, DM3B3 and KMX-1 all reacted with the beta 1-tubulin isotypes expressed in both myxamoebae and plasmodia. However, these antibodies showed a spectrum of reduced reactivity with the plasmodial beta 2-tubulin isotype - the competence of recognition of this isotype was graded DM1B greater than KMX-1 greater than DM3B3. The anti-alpha-tubulin monoclonal antibody, YOL 1/34 defined the full complement of Physarum alpha-tubulin isotypes, whilst the anti-alpha-tubulin monoclonal antibody, KMP-1 showed a remarkably high degree of isotype specificity. KMP-1 recognises all of the myxamoebal alpha 1-tubulin isotypes but only recognises 3 out of the 4 alpha 1-tubulin isotypes expressed in the plasmodium (which normally focus in the same 2D gel spot). KMP-1 does not recognise the plasmodial specific alpha 2-tubulin isotype. This monoclonal antibody reveals a new level of complexity amongst the tubulin isotypes expressed in Physarum and suggests that monoclonal antibodies are valuable probes for individual members of multi-tubulin families.  相似文献   

4.
5.
Xenopus oocytes are blocked in prophase of the first meiotic division. During the G2/M transition drastic changes occur both in the cytoskeletal organization and in the capacity of tubulin to polymerize. Posttranslational modification of tubulin isoforms might be one of the factors that control the dynamic properties of microtubules. We have therefore analysed, by two-dimensional polyacrylamide gel electrophoresis, the isotubulins purified from Xenopus oocytes, and we show that tubulin is resolved into at least four alpha-isoforms and four beta-isoforms. We have identified a basic alpha (alpha b)-tubulin isoform which is specific to prophase arrested oocyte and that progressively disappears during meiotic maturation; its decrease is initiated when the nuclear envelope breaks down and is controlled by the nucleus. Using 35S methionine labelled oocytes we demonstrate that the disappearance of the alpha b isotubulin results from both an arrest of its biosynthesis after maturation, and from posttranslational modification which induces a shift of this alpha-isoform to a more acidic pI. Moreover, in vitro experiments using 35S prelabelled tubulin purified from prophase oocytes show that metaphase extracts containing MPF activity are able to induce the acidification of the alpha b-isoform, suggesting that the observed posttranslational modification might be regulated by p34cdc2. However, the nature of this modification remains to be elucidated.  相似文献   

6.
It is well established that microtubules interact with intracellular membranes of eukaryotic cells. There is also evidence that tubulin, the major subunit of microtubules, associates directly with membranes. In many cases, this association between tubulin and membranes involves hydrophobic interactions. However, neither primary sequence nor known posttranslational modifications of tubulin can account for such an interaction. The goal of this study was to determine the molecular nature of hydrophobic interactions between tubulin and membranes. Specifically, I sought to identify a posttranslational modification of tubulin that is found in membrane proteins but not in cytoplasmic proteins. One such modification is the covalent attachment of the long chain fatty acid palmitate. The possibility that tubulin is a substrate for palmitoylation was investigated. First, I found that tubulin was palmitoylated in resting platelets and that the level of palmitoylation of tubulin decreased upon activation of platelets with thrombin. Second, to obtain quantities of palmitoylated tubulin required for protein structure analysis, a cell-free system for palmitoylation of tubulin was developed and characterized. The substrates for palmitoylation were nonpolymerized tubulin and tubulin in microtubules assembled with the slowly hydrolyzable GTP analogue guanylyl-(alpha, beta)-methylene-diphosphonate. However, tubulin in Taxol-assembled microtubules was not a substrate for palmitoylation. Likewise, palmitoylation of tubulin in the cell-free system was specifically inhibited by the antimicrotubule drugs Colcemid, podophyllotoxin, nocodazole, and vinblastine. These experiments identify a previously unknown posttranslational modification of tubulin that can account for at least one type of hydrophobic interaction with intracellular membranes.  相似文献   

7.
Deflagellation of Crithidia fasciculata stimulated formation of new flagella and maximized production of alpha 3 tubulin. Continuous labeling during reflagellation revealed that alpha 1, 2, and 3 tubulins were formed, whereas the polyadenylated RNA translation products lacked alpha 3 isoform. Pulse-chase labeling experiments demonstrated that alpha 3 was a post-translational modification of cytoplasmic alpha tubulin.  相似文献   

8.
Cell extracts of myxamoebae of Physarum polycephalum have been prepared in such a way that they do not inhibit assembly of brain microtubule protein in vitro even at high extract-protein concentration. Co-polymers of these extracts and brain tubulin have been purified to constant stoichiometry and amoebal components identified by radiolabelling. Amoebal tubulin has been identified as having an alpha-subunit, mol.wt. 54 000, which co-migrates with brain alpha-tubulin and a beta-subunit, mol.wt. 50 000, which co-migrates with Tetrahymena ciliary beta-tubulin. Non-tubulin amoebal proteins that co-purify with tubulin during co-polymer formation have been shown to be essential for microtubule formation in the absence of glycerol and appear to be rather more effective than brain microtubule-associated proteins in stimulating assembly. The mitotic inhibitor griseofulvin (7-chloro-2',4,6-trimethoxy-6'-methylspiro[benzofuran-2(3H),1'-cyclohex-2'-ene] -3,4'-dione), which binds to brain microtubule-associated proteins and inhibits brain microtubule assembly in vitro, affected co-polymer microtubule protein in a similar way, but to a slightly greater extent.  相似文献   

9.
In the mutant BEN210 of Physarum polycephalum several beta-tubulins are detectable. beta 1-tubulin is unique to the myxamoeba, beta 2-tubulin is unique to the plasmodium, and the mutant beta 1-210 tubulin encoded by the benD210 allele is present in both cell types. In order to analyse the subcellular distribution of the beta 1-210 polypeptide, we prepared cytoskeletons from myxamoebae and mitotic spindles from plasmodia, and examined the tubulin polypeptide composition of these microtubular organelles by two-dimensional gel electrophoresis and immunoblotting. The results show that the beta 1-210 tubulin is present in microtubules of both the cytoskeleton and the intranuclear mitotic spindle. Thus a single beta-tubulin gene product can participate in multiple microtubular organelles in distinct cellular compartments.  相似文献   

10.
Changes in a posttranslational modification of tubulin, which accompany differentiation, have been studied in neuroblastoma-glioma hybrid cultured cells. The modification consists of the reversible enzymatic addition of a tyrosine to the COOH terminus of the alpha chain. Cytoplasmic tubulin purified from undifferentiated cells resembled that from adult mammalian brain in that half was in a form which can not accept tyrosine; of the remainder, which is a substrate for tubulin-tyrosine ligase, a higher proportion had COOH-terminal tyrosine. In the tubulin from differentiated cells, in which there had been extensive assembly of axonal microtubules from a preformed pool of subunits, the nonsubstrate tubulin was almost entirely replaced by the species with COOH-terminal tyrosine. In living cells, in the absence of protein synthesis, there was fixation of labeled tyrosine into cytoplasmic alpha chains which was extensive enough to be consistent with turnover, during the course of an hour, of the pre-existing COOH-terminal tyrosine. The alpha chain in the particulate fraction of the cells was comparably labeled, along with some unidentified low molecular weight components.  相似文献   

11.
Distribution of acetylated alpha-tubulin in Physarum polycephalum   总被引:4,自引:1,他引:3       下载免费PDF全文
The expression and cytological distribution of acetylated alpha-tubulin was investigated in Physarum polycephalum. A monoclonal antibody specific for acetylated alpha-tubulin, 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094), was used to screen for this protein during three different stages of the Physarum life cycle--the amoeba, the flagellate, and the plasmodium. Western blots of two-dimensional gels of amoebal and flagellate proteins reveal that this antibody recognizes the alpha 3 tubulin isotype, which was previously shown to be formed by posttranslational modification (Green, L. L., and W. F. Dove, 1984, Mol. Cell. Biol., 4:1706-1711). Double-label immunofluorescence demonstrates that, in the flagellate, acetylated alpha-tubulin is localized in the flagella and flagellar cone. Similar experiments with amoebae interestingly reveal that only within the microtubule organizing center (MTOC) are there detectable amounts of acetylated alpha-tubulin. In contrast, the plasmodial stage gives no evidence for acetylated alpha-tubulin by Western blotting or by immunofluorescence.  相似文献   

12.
Microtubule protein of >95% purity has been isolated by self-assembly from concentrated cell extracts of myxamoebae of Physarum polycephalum. Ninety-eight percent of the amoebal microtubule protein was tubulin. Both a and β subunits of amoebal tubulin were different from neurotubulin α and β subunits, but very similar to those of Tetrahymena ciliary tubulin. The non-tubulin components, which co-purified with tubulin through three assembly cycles, were essential to microtubule formation and contained several polypeptides including some of apparent molecular weights 49000, 57000 and 59000. Purified amoebal microtubule protein formed microtubules on warming in the absence of glycerol which were cold- and Ca2+-labile. In vitro, microtubule assembly was inhibited by vinblastine, benzimidazole derivatives and griseofulvin, but not by 10?4 M colchicine. Amoebal tubulin had a much lower affinity than neurotubulin for colchicine.  相似文献   

13.
Microtubules participate in a large number of intracellular events including cell division, intracellular transport and secretion, axonal transport, and maintenance of cell morphology. They are composed of tubulin, a heterodimeric protein, consisting of two similar polypeptides alpha and beta. In mammalian cells, both alpha- and beta-tubulin occur as seven to eight different genetic variants, which also undergo numerous posttranslational modifications that include tyrosination-detyrosination and deglutamylation, phosphorylation, acetylation, polyglutamylation, and polyglycylation. Tyrosination-detyrosination is one of the major posttranslational modifications in which the C-terminal tyrosine residue in alpha-tubulin is added or removed reversibly. Although this modification does not alter the assembly activity of tubulin in vitro, these two forms of tubulin have been found to be distributed differently in vivo and are also correlated with microtubule stability (Gunderson, G. G., Kalnoski, M. H., and Bulinski, J. C. (1984) Cell 38, 779-789). Thus, the question arises as to whether these two forms of tubulin differ in any other modifications. In an effort to answer this question, the tyrosinated and the nontyrosinated forms of the alpha1/2 isoform have been purified from brain tubulin by immunoaffinity chromatography. matrix-assisted laser desorption/ionization-time of flight mass spectrometric analysis of the C-terminal peptide revealed that the tyrosinated form is polyglutamylated with one to four Glu residues, while the Delta2 tubulin is polyglycylated with one to three Gly residues. These results indicate that posttranslational modifications of tubulin are correlated with each other and that polyglutamylation and polyglycylation of tubulin may have important roles in regulating microtubule assembly, stability, and function in vivo.  相似文献   

14.
The tubulins of the plasmodium of Physarum polycephalum have been identified by in vitro microtubule assembly from partially purified extracts of asynchronous microplasmodia and late G2 macroplasmodia. The plasmodial tubulin group comprised of 2 alpha tubulins (app. m.w. 51000 daltons) and 2 beta tubulins (app. m.w. 58000 daltons and 55000 daltons) and appeared to be identical with a group of polypeptides which are synthesized periodically in late G2. Two of the plasmodial tubulin subunits (one alpha and one beta) were identical to the Physarum amoebal tubulin alpha and beta subunits as characterised by 2D gel positions.  相似文献   

15.
We have used anti-tubulin antibodies and immunofluorescence microscopy to determine the overall distribution of microtubules during interphase and mitosis in both the myxamoebae and plasmodia of the slime mold Physarum polycephalum. We have paralleled these observations with electron microscopy of the same stages. The myxamoebae possess a network of cytoplasmic microtubules whilst the coenocytic plasmodium does not possess any cytoplasmic microtubules--at either interphase or mitosis. In plasmodia microtubules are, however, elaborated by an intranuclear microtubule organizing centre (MTOC) during prophase of mitosis and these microtubules proceed to form part of the mitotic spindle. There is little difference in the overall distribution and arrangement of microtubules during division of either the myxamoebal or plasmodial nuclei. These findings are discussed in relation to the synthesis of tubulin during the plasmodial cell cycle and the rearrangements of the nuclear envelope during mitosis.  相似文献   

16.
Tubulin heterogeneity in the trypanosome Crithidia fasciculata.   总被引:11,自引:2,他引:9  
The interphase cell of Crithidia fasciculata has three discrete tubulin populations: the subpellicular microtubules, the axonemal microtubules, and the nonpolymerized cytoplasmic pool protein. These three tubulin populations were independently and selectively purified, yielding, in each case, microtubule protein capable of self-assembly. All three preparations polymerized to form ribbons and sheets rather than the more usual microtubular structures. Analyses of the tubulin by two-dimensional polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping indicated that the beta-tubulin complex remained constant regardless of source but that some heterogeneity was present in the alpha subunit. Cytoplasmic pool alpha tubulins (alpha 1/alpha 2) were the only alpha isotypes in the cytoplasm and also formed most of the alpha tubulin species in the pellicular fraction. Flagellar alpha tubulin (alpha 3) was the sole alpha isotype in the flagella; it appeared in small amounts in the pellicular fraction but was completely absent from the cytoplasm. In vitro translation products from polyadenylated RNA from C. fasciculata were also examined by two-dimensional polyacrylamide gel electrophoresis and possessed a protein corresponding to alpha 1/alpha 2 tubulin but lacked any alpha 3 tubulin. The alpha 3 polypeptide arose from a post-translational modification of a precursor polypeptide not identifiable by two-dimensional polyacrylamide gel electrophoresis as alpha 3. Peptide mapping data indicated that cytoplasmic alpha tubulin is the most likely precursor. These results demonstrate alpha-tubulin heterogeneity in this organism and also how close the relationship between flagellar and cytoskeletal tubulins can be among lower eucaryotes.  相似文献   

17.
Shah C  Xu CZ  Vickers J  Williams R 《Biochemistry》2001,40(15):4844-4852
When isolated from tissues, the alpha beta-dimeric protein tubulin consists of multiple isoforms which originate from the expression and subsequent posttranslational modification of multiple polypeptide sequences. Microtubules studied in vitro consist of mixtures of these isoforms. It is therefore not known whether dimers composed of single sequences of alpha- and beta-tubulin can polymerize to form microtubules, or whether posttranslational modifications may be necessary for microtubule assembly. To initiate investigation of these questions, rabbit reticulocyte lysate, which contains the cytoplasmic chaperonin CCT and its cofactors, was employed to prepare substantial quantities (tens of micrograms) of active tubulin by in vitro folding of mouse alpha- and beta-tubulins recombinantly synthesized in E. coli. This recombinant tubulin is composed of only a single alpha-chain and a single beta-chain. When analyzed after folding by isoelectric focusing, each chain yielded only one band, indicating that neither was detectably posttranslationally modified in the course of the folding reaction. When subjected to assembly-promoting conditions, this tubulin formed microtubules without the addition of any exogenous protein. Electron microscopy showed them to be of normal morphology. Analysis of their protein composition showed that they are composed nearly entirely of recombinant tubulin. These results demonstrate that the naturally occurring mixtures of isoforms are not strictly required for the formation of microtubules. They also open a route to other studies, both biomedical and structural, of fully defined tubulin in vitro.  相似文献   

18.
E Y Lai  C Walsh  D Wardell  C Fulton 《Cell》1979,17(4):867-878
The programmed de novo synthesis of flagellar tubulin during the hour-long differentiation of Naegleria gruberi from amoebae to flagellates is our paradigm for the study of gene expression during cell differentiation. This paper reports the efficient translation of flagellar tubulin mRNA in the wheat germ cell-free system directed by total or polyadenylated RNA extracted from differentiating cells. The tubulin in the in vitro product has a subunit molecular weight of 55,000, separates into alpha and beta subunits under suitable conditions of polyacrylamide gel electrophoreis and co-polymerizes with calf brain tubulin. At least half of the tubulin synthesized in vitro is precipitated by antibodies specific to flagellar tubulin, and the immunoprecipitated tubulin subunits yield peptide maps similar to those of outer doublet tublin. Flagellar tubulin is the predominant protein synthesized in the cell-free system, and amounts to about 5% of the polypeptides whose synthesis is directed by total RNA from differentiating cells. In contrast, little or no flagellar tubulin is synthesized when the cell-free system is directed by RNA extracted from amoebae prior to differentiation. Translation assays show that at least 92% of the flagellar tubulin mRNA appears during differentiation. The time course of appearance of this mRNA was measured by quantitative immunoprecipitation of the cell-free products. Under conditions where cells from flagella 60 min after initiation of differentiation, translatable flagellar tubulin mRNA was first detected at 20 min, reached a maximum at about 60 min and then declined. An excellent correlation was observed between the amount of translatable flagellar tubulin mRNA and the previously measured rates of flagellar tubulin synthesis in vivo. These results indicate that synthesis of flagellar tubulin is a direct reflection of the abundance of its mRNA, and provide the molecular techniques for dissection of the factors that regulate the rapid appearance of this structural protein during differentiation.  相似文献   

19.
Polyglutamylation, a new posttranslational modification of tubulin identified originally on the acidic alpha variants by Eddé et al. (Eddé, B., Rossier, J., Le Caer, J. P., Desbruyeres, E., Gros, F., and Denoulet, P. (1990) Science 247, 83-85), consists of the successive addition of glutamyl units to the Glu445. To characterize their linkage mode mouse tubulin was posttranslationally labeled with [3H]glutamate. After digestion of [3H]tubulin with thermolysin, up to eight radioactive peaks were separated on an anion exchange column (DEAE). Combined use of Edman degradation sequencing and mass spectrometry analysis of the first 6 one indicated that they all correspond to the same COOH-terminal sequence 440VEGEGEEEGEE450 bearing one to six glutamyl units on the Glu445. The first glutamyl residue is amide-linked to the gamma-carboxyl group of Glu445, but the additional residues can be linked to the gamma- or alpha-carboxyl groups of the preceding one. All possible linkages for the biglutamylated tubulin peptides (gamma 1 alpha 2, gamma 1 gamma 2) and triglutamylated (gamma 1 alpha 2 alpha 3, gamma 1 alpha 2 gamma 3, gamma 1 alpha 2 gamma 2, gamma 1 gamma 2 alpha 3, gamma 1 gamma 2 gamma 3) were synthesized. These different peptides were successfully separated on a C18 5-micron reverse phase column. We found that the bi- and triglutamylated tubulin peptides behave as the gamma 1 alpha 2 and gamma 1 alpha 2 alpha 3 synthetic peptides, respectively. These results indicate that the second and third glutamyl residues of the polyglutamyl side chain are amide-linked to the alpha-carboxyl group of the preceding unit.  相似文献   

20.
We have used monoclonal antibodies specific for acetylated and unacetylated alpha-tubulin to characterize the acetylated alpha-tubulin isotype of Physarum polycephalum, its expression in the life cycle, and its localization in particular microtubular organelles. We have used the monoclonal antibody 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) as the probe for acetylated alpha-tubulin and have provided a biochemical characterization of the monoclonal antibody KMP-1 as a probe for unacetylated tubulin in Physarum. Concomitant use of these two probes has allowed us to characterize the acetylated alpha-tubulin of Physarum as the alpha 3 isotype. We have detected this acetylated alpha 3 tubulin isotype in both the flagellate and in the myxameba, but not in the plasmodium. In the flagellate, acetylated tubulin is present in both the flagellar axonemes and in an extensive array of cytoplasmic microtubules. The extensive arrangement of acetylated cytoplasmic microtubules and the flagellar axonemes are elaborated during the myxameba-flagellate transformation. In the myxameba, acetylated tubulin is not present in the cytoplasmic microtubules nor in the mitotic spindle microtubules, but is associated with the two centrioles of this cell. These findings, taken together with the apparent absence of acetylated alpha-tubulin in the ephemeral microtubules of the plasmodium suggest a natural correspondence between the presence of acetylated alpha-tubulin and microtubule organelles that are intrinsically stable or cross-linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号