首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liver progenitors, so-called oval cells, proliferate remarkably from periportal areas after severe liver injury when hepatocyte regeneration is compromised. These cells invade far into the liver parenchyma. Molecular mechanisms underlying these behaviors of oval cells remain poorly understood. In this study, we treated rats with 2-acetylaminofluorene/carbon tetrachloride to induce hepatic oval cells. By expression microarray analysis, we investigated global gene expression profiles in liver tissue, with an emphasis on adhesion molecules, extracellular matrix proteins, matrix metalloproteinases (MMPs), growth factors/cytokines, and receptors that might contribute to the distinct behaviors of oval cells. Genes upregulated at least twofold were selected. We then performed immunostaining to verify the microarray results and identified expression of MMP-7 and CD44 in oval cells. Staining of cytokeratin (CK)-19, an oval-cell marker, was similar between oval cells located next to periportal areas and those located far within the parenchyma. In contrast, CD44 staining was more intense in the parenchyma than in periportal areas, suggesting a role of CD44 in oval-cell invasion. Moreover, newly differentiated CK-19+ hepatocytes within foci did not show CD44 staining, suggesting that CD44 is related to the undifferentiated oval-cell phenotype. We then investigated oval-cell reactivity in CD44-deficient mice fed an oval cell-inducing diet of 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Results showed significantly reduced oval-cell reactivity in CD44-deficient mice. Thus, oval cells express MMP-7 and CD44, and CD44 appears to play critical roles in the proliferation, invasion, and differentiation of hepatic oval cells in rodents.  相似文献   

2.
Recently we found a small hepatocyte-specific protein, annexin A3 (AnxA3), in fractionated adult rat hepatocytes. Here we describe the results of an in vivo demonstration of AnxA3-expressing cellular phenotypes in the liver with 2-acetylaminofluoren (2-AAF)/carbon tetrachloride (CCl4)-injury. In association with an elevation of alanine amino transferase (ALT) and aspartic acid amino transferase (AST) activities, hepatic AnxA3 mRNA increased markedly. AnxA3-positive cells were detected in clustered cells present in or emerging from the pericentral region. These albumin-expressed cells were histologically similar to cells expressing CD34, a hematopoietic cell marker protein. The number of clusters decreased in the days following CCl4 treatment, and annexin-negative, but albumin-positive, oval cells appeared. We concluded that the agent-induced liver defect initially recruits bone marrow-derived cells, and that it promotes differentiation of these cells into AnxA3-positive cells, followed by emergence of the oval cells, which might have a role in the restitution of the damaged liver.  相似文献   

3.

Backgrounds and Aims

When hepatocyte proliferation is impaired, liver regeneration proceeds from the division of non parenchymal hepatocyte progenitors. Oval cells and Small Hepatocyte-like Progenitor Cells (SHPCs) represent the two most studied examples of such epithelial cells with putative stem cell capacity. In the present study we wished to compare the origin of SHPCs proliferating after retrorsine administration to the one of oval cells observed after 2-Acetyl-Amino fluorene (2-AAF) treatment.

Methodology/Principal Findings

We used retroviral-mediated nlslacZ genetic labeling of dividing cells to study the fate of cells in the liver. Labeling was performed either in adult rats before treatment or in newborn animals. Labeled cells were identified and characterised by immunohistochemistry. In adult-labeled animals, labeling was restricted to mature hepatocytes. Retrorsine treatment did not modify the overall number of labeled cells in the liver whereas after 2-AAF administration unlabeled oval cells were recorded and the total number of labeled cells decreased significantly. When labeling was performed in newborn rats, results after retrorsine administration were identical to those obtained in adult-labeled rats. In contrast, in the 2-AAF regimen numerous labeled oval cells were present and were able to generate new labeled hepatocytes. Furthermore, we also observed labeled biliary tracts in 2-AAF treated rats.

Conclusions

Our results srongly suggest that SHPCs are derived from hepatocytes and we confirm that SHPCs and oval cells do not share the same origin. We also show that hepatic progenitors are labeled in newborn rats suggesting future directions for in vivo lineage studies.  相似文献   

4.
5.
Summary Intoxication of rats with CCl4 (1 ml/kg) resulted in the almost complete loss of glutamine synthetase (GS) specific activity and immunologically detectable enzyme protein known to be expressed exclusively in some hepatocytes of the perivenous zone of the liver acinus. During regeneration the specific activity as well as the original number of GS-positive (GS+) hepatocytes were reestablished. However, while the GS+ hepatocytes in control livers were arranged in up to 3 cell layers surrounding the central veins the same number of GS+ hepatocytes in regenerated livers formed a single cell layer only, most likely because the central veins were enlarged in diameter. Investigation of the nuclear pattern of GS+ and GS hepatocytes of control animals in primary cultures revealed striking differences characterized by significantly more mononuclear diploid, binuclear diploid, and binuclear tetraploid cells among the GS+ hepatocytes and predominantly mononuclear tetraploid cells (70%) among the GS hepatocytes. Immediately after liver damage by CCl4 and during regeneration small but significant changes in the nuclear pattern were noted for GS hepatocytes. However, the first GS+ cells appearing during early regeneration showed a pattern of ploidy classes close to the original one found for GS hepatocytes. These results indicate that new GS+ hepatocytes may be derived from formerly GS cells which are induced to express GS if they have reached the border of the central veins.  相似文献   

6.
The goal of this study was to examine the state of hepatocyte mitochondrial respiratory chain of rats with toxic hepatitis induced by CCl4 and ethanol. Oxygen consumption by hepatocytes and mitochondria was determined. Endogenous oxygen consumption by pathological hepatocytes was 1.3-fold higher compared with control. Rotenone resulted in 27% suppression of respiration by pathological hepatocytes whereas 2,4-dinitrophenol produced a 1.4-fold increase of respiration. States 3 and 4 of mitochondrial respiration with malate and glutamate were found to be higher as compared to control. State dinitrophenol and state 3 respirations were similar within every group of animals when being tested with malate and glutamate or succinate. Cytochrome c oxidase activity in hepatitis was 1.8-fold higher compared with control. Simvastatin administration resulted in a decrease in hepatocyte endogenous respiration in hepatitis. The presented data lead to the assumption that the increased oxygen consumption by the respiratory chain of pathological mitochondria to be linked mainly with the altered function of complex I.  相似文献   

7.
The calcium fluorescent probe fura2 was used to measure concentration of free calcium in the cytosol of isolated rat hepatocytes in suspension. The resting level in untreated hepatocytes was 121 nM. On addition of CCl4 at a concentration of 0.5 mM, cytosolic free calcium rose sharply and reached a statistically significant (P<0.05) steady plateau level of about 190 nM within five minutes. With a concentration of 1.0 mM CCl4, cytosolic free calcium rose within ten minutes to a plateau level of about 200 nM. Use of fura2, along with the capacity of Mn2+ ions to effectively quench fura2 fluorescence, provided the basis for a simple and decisive method to determine whether the added CCl4 was permeabilizing the hepatocyte plasma membrane by direct solvent action. It was found that up to a concentration of 1.0 mM, CCl4 did not permeabilize the plasma membrane, but direct attack on the plasma membrane was unequivocally demonstrated for concentrations of 2 mM CCl4 and above. Finally, an hypothesis is presented for resolution of the puzzling dilemma that emerged from the observation, reported from two laboratories, that CCl4 can rapidly mobilize liver mitochondrial calcium despite the well-known relative resistance of these organelles to the damaging effects of this toxic agent.  相似文献   

8.
This study focused on the hepatoprotective activity of C-phycocyanin (C-PC) against carbon tetrachloride-induced hepatocyte damage in vitro and in vivo. In in vitro study, human hepatocyte cell line L02 was used. C-PC showed its capability to reverse CCl4-induced L02 cells viability loss, alanine transaminase (ALT) leakage and morphological changes. C-PC also showed the following positive effects: prevent the CCl4-induced overproduction of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA); prevent changes in superoxide dismutase (SOD) activity; and reduce glutathione (GSH) level. In vivo, C-PC showed its capability to decrease serum ALT and aspartate transaminase (AST) levels in CCl4-induced liver damage in mice. The histological observations supported the results obtained from serum enzymes assays. C-PC also showed the following effects in mice liver: prevent the CCl4-induced MDA formation and GSH depletion; prevent SOD and glutathione peroxidase (GSH-Px) activity; and prevent the elevation of transforming growth factor-beta1 (TGF-β1) and hepatocyte growth factor (HGF) mRNAs. Both the in vitro and in vivo results suggested that C-PC was useful in protecting against CCl4-induced hepatocyte damage. One of the mechanisms is believed to be through C-PCs scavenging ability to protect the hepatocytes from free radicals damage induced by CCl4. In addition, C-PC may be able to block inflammatory infiltration through its anti-inflammatory activities by inhibiting TGF-β1 and HGF expression.  相似文献   

9.
Oval cells, putative hepatic stem cells, can differentiate into a wide range of cell types including hepatocytes, bile epithelial cells, pancreatic cells and intestinal epithelial cells. In this study, we used different growth factor combinations to induce oval cells to differentiate into mature hepatocytes. We isolated and purified oval cells utilizing selective enzymatic digestion and density gradient centrifugation. Oval cells were identified by their morphological characteristics and the strong expressions of OV-6, albumin, cytokeratin (CK)-19 and CK-7. Using a 2-step induction protocol, we demonstrated that oval cells first changed into small hepatocytes, then differentiated into mature hepatocytes. Small hepatocytes were distinguished from oval cells by their morphological features (e.g. round shape and nuclei) and the lack of CK-19 mRNA expression. Mature hepatocytes were identified by their ultrastructural traits and their expressions of albumin, CK-18, tyrosine aminotransferase (TAT), and alpha-1-antitrypsin (alpha-1-AT). Differentiated cells acquired the functional attributes of hepatocytes in that they secreted albumin and synthesized urea at a high level throughout differentiation. Oval cells can thus differentiate into cells with the morphological, phenotypic and functional characteristics of hepatocytes. This 2-step induction procedure could provide an abundant source of hepatocytes for cell transplantation and tissue engineering.  相似文献   

10.
Brain serotonin (5-HT) modulates the neural effects of ethanol. In the present study, we investigated the changes in 5-HT level, 5-HT2A receptor binding and aldehyde dehydrogenase (ALDH) activity in brain stem and liver of ethanol treated rats and 5-HT2A regulation on ALDH in hepatocyte cultures in vitro. The 5-HT content in the brain stem and liver significantly decreased with an increased 5-HIAA/5-HT ratio in the ethanol treated rats compared to control. Scatchard analysis of [3H] (±)2,3-dimethoxyphenyl-1-[2-(-4-piperidine)-methanol] [3H] MDL 100907 against ketanserin in brain stem of ethanol treated rats showed a significant increase in B max without any change in K d compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in both control and ethanol treated rats with unity as Hill slope value. A significant increase in V max of ALDH activity in liver and a significant decrease in K m in liver and brain stem of ethanol treated rats compared to control was observed. In 24 h culture studies, an increase in enzyme activity was observed in cells in medium with 10% ethanol. The elevated ALDH activity in ethanol treated cells was reversed to control level in presence of 10−5 and 10−7 M 5-HT. Ketanserin, an antagonist of 5-HT2A, reversed the effect of 5HT on 10% ethanol induced ALDH activity in hepatocytes. Our results showed that there was a decreased 5-HT content with an enhanced 5-HT2A receptor and aldehyde dehydrogenase activity in the brain stem of alcohol treated rats and in vitro hepatocyte cultures. The enhanced ALDH activity in ethanol supplemented hepatocytes was reversed to control level in presence of 10−5 and 10−7 M 5-HT.  相似文献   

11.
12.
The combination of carbon tetrachloride (CCl4) and 1,2-dibromoethane (DBE) in isolated rat hepatocytes led to a significant potentiation of both lipid peroxidation and of plasma membrane damage observed after a single treatment with CCl4. Such a synergistic effect appeared to be related to the CCl4-induced shift of DBE metabolism from the cytosolic conjugation with glutathione towards the microsomal transformation into toxic intermediates. In fact, CCl4 significantly inactivated hepatocyte total GSH-transferase, i.e. the DBE detoxification pathway. Furthermore, while the microsomal metabolism of CCl4 was not affected by the simultaneous presence of DBE, the amount of DBE reactive metabolities covalently bound to hepatocyte protein was significantly enhanced in the presence of CCl4.  相似文献   

13.
Background aimsCirculating monocytes have been exploited as an important progenitor cell resource for hepatocytes in vitro and are instrumental in the removal of fibrosis. We investigated the significance of monocytes in peripheral blood stem cells (PBSC) for the treatment of liver cirrhosis.MethodsRat CD14+ monocytes in PBSC were mobilized with granulocyte-colony-stimulating factor (G-CSF) and harvested by magnetic cell sorting (MACS). Female rats with carbon tetrachloride (CCl4)-induced liver cirrhosis were injected CM-DiI-labeled monocytes, CD14? cells (1 × 107 cells/rat) or saline via the portal vein.ResultsRat CD14+ and CD11b+ monocytes in PBSC were partly positive for CD34, CD45, CD44, Oct3/4 and Sox2, suggesting monocytes with progenitor capacity. Compared with CD14? cell-infused and saline-injected rats, rats undergoing monocyte transplantation showed a gradually increased serum albumin level and decreased portal vein pressure, resulting in a significantly improved survival rate. Meanwhile, monocyte transplantation apparently attenuated liver fibrosis by analysis for fibronectin, α2-(1)-procollagen, α-smooth muscle aorta (SMA) and transforming growth factor (TGF)-β. Transplanted monocytes mainly clustered in periportal areas of liver, in which 1.8% cells expressed hepatocyte marker albumin and CK18. The expression level of hepatocyte growth factor (HGF), TGF-α, extracellular matrix (EGF) and vascular endothelial growth factor (VEGF) increased, while monocyte transplantation enhanced hepatocyte proliferation. On the other hand, the activities and expression of matrix metalloproteinases (MMP) increased while tissue inhibitor of metalloproteinase (TIMP)-1 expression significantly reduced in monocyte-transplanted livers. Some transplanted monocytes expressed MMP-9 and -13.ConclusionsThe data suggest that CD14+ monocytes in PBSC contribute to hepatocyte regeneration and extracellular matrix (ECM) remodeling in rat liver cirrhosis much more than CD14? cells, and might offer a therapeutic alternative for patients with liver cirrhosis.  相似文献   

14.
Summary Isolated rat hepatocytes were transplanted into the interscapular and both anterior lateral fat pads of hepatectomized syngeneic rats. At various time points following transplantation, the fat pads were removed, fixed and embedded in paraffin. Serial sections were stained for glutamine synthetase (GS) and carbamoylphosphate synthetase (CPS) using specific antisera and the PAP technique. The initially low fraction of GS+-heptatocytes remained low up to the fourth day, then increased strikingly up to almost 100% and declined gradually after the 14th day. In contrast, the number of CPS+-cells declined continuously to about 30% after 28 days. If the animals were exposed to CCl4 prior to the isolation of the hepatocytes in order to reduce the number of GS+-cells in the initial cell suspension similar results were obtained and no difference in the probability of the colony formation was noted between this and the normal hepatocyte suspensions indicating that the appearance of the GS+-phenotype was not due to a selective survival of these cells. Analysis of the staining intensity of the transplanted hepatocytes revealed the appearance of two populations of GS+-hepatocytes, one with a strong and one with a weak staining, during the course of formation of larger nodules, while only a single weakly stained population could be discerned with respect to the staining for CPS. These results demonstrate that all hepatocytes or at least their descendents can be induced to express GS by the environmental conditions of the fat pads, and that GS and CPS can be co-expressed with an apparently reciprocal relationship.  相似文献   

15.
In this study the effects of S-adenosylmethionine (SAM) on experimental hepatic fibrotic rats induced by carbon tetrachloride (CCl4) and ethanol and the relevant potential mechanisms were explored. Hepatic fibrotic rat models were established with CCl4 diluted in olive oil being drunk with 10% ethanol in water. SAM was used both for prevention and treatment. Histological evaluation was carried out by hematoxylin- eosin (HE) and Masson staining of hepatic samples. Serum biochemical assays showed that alanine aminotransferase (ALT) was increased and albumin (ALB) was decreased by CCl4 and ethanol, and both effects were suppressed by preventing and treating use of SAM. The model control rats got significantly higher scores in fatty degeneration, lobular inflammation, and hepatocyte ballooning. A significant improvement was observed in the SAM-prevented rats and SAM-treated rats, which was consistent with the change of fibrosis scoring in each group. Smad3 was induced by CCl4 and ethanol in the model control group, which was significantly down regulated by SAM. SAM reduced both total Smad3 and phospho-Smad3 in vitro. SAM had a protective effect on hepatic fibrosis in rats induced by CCl4 combined with ethanol and the down-regulation of activity and expression of Smad3 were involved in the potential mechanisms.  相似文献   

16.
17.
The 2-acetaminofluorene/partial hepatectomy (AAF/Phx) model is widely used to induce oval/progenitor cell proliferation in the rat liver. We have used this model to study the impact of a primary hepatocyte mitogen, triiodothyronine (T3) on the liver regenerating by the recruitment of oval/progenitor cells. Administration of T3 transiently accelerates the proliferation of the oval cells, which is followed by rapid differentiation into small hepatocytes. The oval cell origin of the small hepatocytes has been proven by tracing retrovirally transduced and BrdU marked oval cells. The differentiating oval cells become positive for hepatocyte nuclear factor-4 and start to express hepatocyte specific connexin 32, α1 integrin, Prox1, cytochrom P450s, and form CD 26 positive bile canaliculi. At the same time oval cell specific OV-6 and alpha-fetoprotein expression is lost. The upregulation of hepatocyte specific mRNAs: albumin, tyrosine aminotransferase and tryptophan 2,3-dioxygenase detected by real-time PCR also proves hepatocytic maturation. The hepatocytic conversion of oval cells occurs on the seventh day after the Phx in this model while the first small hepatocytes appear 5 days later without T3 treatment. The administration of the primary hepatocyte mitogen T3 accelerates the differentiation of hepatic progenitor cells into hepatocytes in vivo, and that may have therapeutic potential. Supported by OTKA T 42674 and ETT 32/2006.  相似文献   

18.
Recent reports have demonstrated that Sox9+HNF4α+ hepatocytes are involved in liver regeneration after chronic liver injury; however, little is known about the origin of Sox9+HNF4α+ hepatocytes and the regulatory mechanism. Employing a combination of chimeric lineage tracing, immunofluorescence, and immunohistochemistry, we demonstrate that Sox9+HNF4α+ hepatocytes, generated by transition from mature hepatocytes, play an important role in the initial phase after partial hepatectomy (PHx). Additionally, knocking down the expression of Sox9 suppresses hepatocyte proliferation and blocks the recovery of lost hepatic tissue. In vitro and in vivo assays demonstrated that Bcl3, activated by LPS, promotes hepatocyte conversion and liver regeneration. Mechanistically, Bcl3 forms a complex with and deubiquitinates YAP1 and further induces YAP1 to translocate into the nucleus, resulting in Sox9 upregulation and mature hepatocyte conversion. We demonstrate that Bcl3 promotes Sox9+HNF4α+ hepatocytes to participate in liver regeneration, and might therefore be a potential target for enhancing regeneration after liver injury.Subject terms: Ubiquitylation, Transdifferentiation, NF-kappaB, Regeneration, Stem-cell research  相似文献   

19.
Isolated rat hepatocytes exposed to CCl4 showed a stimulated formation of malonaldehyde after only 30–60 min incubation. Conversely, the onset of hepatocyte death was a relatively late event, being significant only after 2–3 h of treatment. A cause–effect relationship between the two phenomena has been demonstrated by using hepatocytes isolated from rats pretreated with alpha-tocopherol. Comparable results were obtained in vivo where supplementation with alpha-tocopherol 15 h before CCl4 dosing induced a partial or complete protection against the drug's necrogenic effect, depending on the concentration of the haloalkane used. Moreover, the vitamin supplementation prevented the CCl4-induced increase of liver total calcium content, probably by blocking alterations in the liver cell plasma membranes due to lipid peroxidation.  相似文献   

20.
On the basis of their characteristics, we presume that developmental stage-specific hepatocytes should have the ability to induce maturation of hepatoma cells. A regulatory circuit formed by hepatocyte nuclear factor (HNF)-4α, HNF-1α, HNF-6 and the upstream stimulatory factor (USF-1) play a key role in the maturation of embryonic hepatocytes; however, it is unclear whether the regulatory circuit mediates the embryonic induction of hepatoma cell maturation. In this study, 12.5-d to 15.5-d mouse embryonic hepatocytes or their medium were used to coculture or treat HepG2 cells, and the induced maturation was evaluated in vitro and in vivo. In the induced HepG2 cells, the components of the regulatory circuit were detected, their cross-regulation was evaluated and HNF-4α RNA interference was performed. We found that 13.5-d to 14.5-d embryonic hepatocytes could induce HepG2 cell maturation, demonstrated by morphological changes, increased maturation markers and decreased c-Myc and α-fetoprotein (AFP) in vitro. The majority of HepG2 tumors were eliminated by 13.5-d embryonic induction in vivo. All components of the regulatory circuit were upregulated and the binding of HNF-4α, HNF-1α, HNF-6 and USF-1 to their target sites was promoted to rebuild the regulatory circuit in the induced HepG2 cells. Moreover, RNA interference targeting HNF-4α, which is the core of the regulatory circuit, attenuated the induced maturation of HepG2 cells with downregulation of the regulatory circuit. These results revealed that developmental stage-specific hepatocytes could induce the maturation of HepG2 cells by rebuilding the regulatory circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号