首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Natural killer (NK) cells play important roles in controlling tumor cells and against a range of infectious organisms. Recent studies of mouse NK cell surface receptors, which may be involved in the specificity of NK cells, have shown that many of these molecules are encoded by theLy49andLy55(Nkrp1) multigene families that map to distal mouse chromosome 6. Also mapping to this NK cell gene complex (NKC) is the resistance locus,Cmv1,which is involved in genetically determined resistance to murine cytomegalovirus (MCMV). The aim of this study was to localizeCmv1more precisely in relation to other NKC loci by generating a high-resolution genetic map of the region. We have analyzed 1250 backcross mice comprising panels of 700 (BALB/c × C57BL/6J)F1× BALB/c and 550 (A/J × C57BL/6J)F1× A/J progeny. A total of 25 polymorphic genes or microsatellite markers were analyzed over a region of 10 map units fromD6Mit134toD6Mit59.TheCmv1phenotypes of mice recombinant in this interval were tested by infection with MCMV. The results obtained indicate that the functionally important NKC region is a tightly linked cluster of loci spanning at least 0.4 map units. Furthermore,Cmv1maps distal to, but very closely linked to, theLy49multigene family (<0.2 map units), suggesting that MCMV resistance may be conferred by MHC class I-specific NK cell receptors.  相似文献   

3.
The NK gene complex (NKC) on mouse chromosome 6 encodes receptors that are expressed on NK cells, such as Ly49H, and is involved in regulating NK cell control of virus infections, such as murine cytomegalovirus (MCMV). In the present study, we investigated the level of allelic heterogeneity in NKC loci in populations of outbred wild mice. This work revealed extensive levels of heterogeneity within two wild mouse populations. Analysis of MCMV replication in a population of specific pathogen-free outbred wild mice revealed that low viral titres, which are normally associated with the Cmv1(r) allele of the Cmv1 host resistance locus, were not prevalent in the mice tested. Hence, NKC-mediated resistance associated with Cmv1(r)/Ly49H-like effects was rare in this population. Overall, these data indicate that the NKC region is highly polymorphic and thus it is very likely that it confers on mice sufficient variability to cope with infection by a range of pathogens.  相似文献   

4.
The NK gene complex (NKC) controls murine cytomegalovirus (MCMV) immunity through Cmv1-dependent natural killer (NK) cell responses. Ly49H expression correlates with Cmv1 phenotypes in different inbred strains, is required for MCMV resistance in C57BL/6 (B6) mice, and its interaction with the MCMV encoded m157 protein leads to NK cell-mediated destruction of virus-infected cells. However, genetic mapping studies have previously indicated that Cmv1 should reside in the D6Wum9–16 NKC interval, distal to Ly49h. Since these data suggested that multiple NKC-linked loci could regulate viral immunity, a putative MCMV resistance control (Mrc) locus was pinpointed to within the D6Wum9–16 interval on a NKC-aligned bacterial artificial chromosome (BAC). Sequence analysis of BAC 151 revealed several novel G-protein coupled receptor genes, an HMG-1 remnant and many additional polymorphic microsatellites that were useful in determining the minimal genetic interval for the Mrc locus. Moreover, comparison of B6, BALB/c, A/J and recombinant Mrc alleles restricted the genetic interval to approximately 470 bp and showed that it was also a hotspot for recombination. MCMV challenge of novel NKC recombinant mice demonstrated that MrcB6 was not required for MCMV resistance nor could it directly complement the Ly49BALB haplotype to rescue MCMV susceptibility. Taken together, these data show that while Mrc apparently guides recombination, Ly49H expression is sufficient for MCMV resistance in B6 mice. A direct role for MrcB6 in virus resistance is excluded in the novel mice.The nucleotide sequence data reported in this paper were assigned GenBank accession numbers AF462604, AY145449 and AY145450.  相似文献   

5.
NK cell-mediated resistance to viruses is subject to genetic control in humans and mice. Here we used classical and quantitative genetic strategies to examine NK-mediated murine cytomegalovirus (MCMV) control in genealogically related New Zealand white (NZW) and black (NZB) mice. NZW mice display NK cell-dependent MCMV resistance while NZB NK cells fail to limit viral replication after infection. Unlike Ly49H+ NK resistance in C57BL/6 mice, NZW NK-mediated MCMV control was Ly49H-independent. Instead, MCMV resistance in NZW (Cmv2) involves multiple genetic factors. To establish the genetic basis of Cmv2 resistance, we further characterized a major chromosome X-linked resistance locus (DXMit216) responsible for innate MCMV control in NZW × NZB crosses. We found that the DXMit216 locus affects early MCMV control in New Zealand F2 crosses and demonstrate that the NZB-derived DXMit216 allele enhances viral resistance in F2 males. The evolutionary conservation of the DXMit216 region in mice and humans suggests that a Cmv2-related mechanism may affect human antiviral responses. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Ly49G and H-2 class I D(k) molecules are critical to natural killer cell-mediated viral control. To examine their contributions in greater depth, we established NK gene complex (NKC)/Ly49 congenic strains and a novel genetic model defined by MHC class I D(k) disparity in congenic and transgenic mouse strains. Generation and maintenance of Ly49 and H-2 class I select strains require efficient and reproducible genotyping assays for highly polygenic and polymorphic sequences. Thus, we coupled gene- and allele-specific PCR with high-resolution melt (HRM) analysis to discriminate Ly49g and H-2 class I D and K alleles in select strains and in the F(2) and backcross hybrid offspring of different genetic crosses. We show that HRM typing for these critical immune response genes is fast, accurate, and dependable. We further demonstrate that H-2 class I D HRM typing is competent to detect and quantify transgene copy numbers in different mice with distinct genetic backgrounds. Our findings substantiate the utility and practicality of HRM genotyping for highly related genes and alleles, even those belonging to clustered multigene families. Based on these findings, we envision that HRM is capable to interrogate and quantify gene- and allele-specific variations due to differential regulation of gene expression.  相似文献   

7.
The identification and characterization of genetic loci that contribute to patterns of susceptibility/resistance to infection provide important insights into the mechanisms of innate and adaptive immunity. Genetic heterogeneity across the population makes the characterization of such traits in humans technically difficult; however, inbred animal models represent an ideal tool for such analyses. This review illustrates the power of mouse genetics as utilized for the identification and characterization of the locus conferring early resistance to murine cytomegalovirus infection, Cmv1. This locus encodes an activating C-type lectin receptor of the Ly49 family that promotes natural killer (NK) cell cytolysis of infected cells. Although NK cells are usually able to detect and destroy virally infected cells via recognition of the downregulation of MHC class I molecules, the Cmv1 locus provides the first example of an NK receptor that is able to mediate clearance of viral infection via direct recognition of a virally encoded protein.  相似文献   

8.
CMV can cause life-threatening disease in immunodeficient hosts. Experimental infection in mice has revealed that the genetically determined natural resistance to murine CMV (MCMV) may be mediated either by direct recognition between the NK receptor Ly49H and the pathogen-encoded glycoprotein m157 or by epistatic interaction between Ly49P and the host MHC H-2D(k). Using stocks of wild-derived inbred mice as a source of genetic diversity, we found that PWK/Pas (PWK) mice were naturally resistant to MCMV. Depletion of NK cells subverted the resistance. Analysis of backcrosses to susceptible BALB/c mice revealed that the phenotype was controlled by a major dominant locus effect linked to the NK gene complex. Haplotype analysis of 41 polymorphic markers in the Ly49h region suggested that PWK mice may share a common ancestral origin with C57BL/6 mice; in the latter, MCMV resistance is dependent on Ly49H-m157 interactions. Nevertheless, PWK mice retained viral resistance against m157-defective mutant MCMV. These results demonstrate the presence of yet another NK cell-dependent viral resistance mechanism, named Cmv4, which most likely encodes for a new NK activating receptor. Identification of Cmv4 will expand our understanding of the specificity of the innate recognition of infection by NK cells.  相似文献   

9.
The Lp mouse mutant provides a model for the severe human neural tube defect (NTD), cranio-rachischisis. To identify the Lp gene, a positional cloning approach has been adopted. Previously, linkage analysis in a large intraspecific backcross was used to map the Lp locus to distal mouse chromosome 1. Here we report a detailed physical map of this region. The interval surrounding Lp has been cloned in a yeast artificial chromosome (YAC) contig consisting of 63 clones spanning approximately 3.2 Mb. Fifty sequence tagged sites (STSs) have been used to construct the contig and establish marker order across the interval. Based on the high level of conserved synteny between distal mouse chromosome 1 and human 1q21-q24, many of these STSs were designed from expressed sequences identified by cross-screening human and mouse databases of expressed sequence tags. Added to other known genes in the region, a total of 29 genes were located and ordered within the contig. Seven novel polymorphisms were identified within the region, allowing refinement of the genetic map and a reduction in the size of the physical interval containing the Lp gene. The Lp interval, between D1Mit113 and Tagln2, can be spanned by two nonchimeric overlapping YACs that define a physical distance of approximately 1 Mb. Within this region, 10 potential candidate genes have been mapped. The materials and genes described here will provide a resource for the identification and further study of the mutated Lp gene that causes this severe neural tube defect and will provide candidates for other defects known to map to the homologous region on human chromosome 1q.  相似文献   

10.
Cmv1 was the first mouse cytomegalovirus (MCMV) resistance locus identified in C57BL/6 mice. It encodes Ly49H, a NK cell-activating receptor that specifically recognizes the m157 viral protein at the surface of MCMV-infected cells. To dissect the effect of the Ly49h gene in host-pathogen interactions, we generated C57BL/6 mice lacking the Ly49h region. We found that 36 h after MCMV infection, the lack of Ly49h resulted in high viral replication in the spleen and dramatically enhanced proinflammatory cytokine production in the serum and spleen. At later points in time, we observed that MCMV induced a drastic loss in CD8(+) T cells in B6.Ly49h(-/-) mice, probably reflecting severe histological changes in the spleen. Overall, our results indicate that Ly49H(+) NK cells contain a systemic production of cytokines that may contribute to the MCMV-induced pathology and play a central role in maintaining normal spleen cell microarchitecture. Finally, we tested the ability of B6.Ly49h(-/-) mice to control replication of Leishmania major and ectromelia virus. Resistance to these pathogens has been previously mapped within the NK gene complex. We found that the lack of Ly49H(+) NK cells is not associated with an altered resistance to L. major. In contrast, absence of Ly49H(+) NK cells seems to afford additional protection against ectromelia infection in C57BL/6 mice, suggesting that Ly49H may recognize ectromelia-infected cells with detrimental effects. Taken together, these results confirm the pivotal role of the Ly49H receptor during MCMV infection and open the way for further investigations in host-pathogen interactions.  相似文献   

11.
Natural killer (NK) cells play critical roles in antiviral immunity. While the importance of effector mechanisms such as interferons has been demonstrated through knockout mice, specific mechanisms of how viruses are recognized and controlled by NK cells are less well defined. Previous genetic studies have mapped the resistance genes for murine cytomegalovirus (MCMV), herpes simplex virus-1 (HSV-1), and ectromelia virus to the NK gene complex on murine chromosome 6, a region containing the polymorphic Ly49 and Nkrp1 families. Genetic resistance to MCMV in C57BL/6 has been attributed to Ly49H, an activation receptor, through susceptibility of the recombinant inbred strain BXD-8 that lacks Ly49h (also known as Klra8) but derived about half of its genome from its DBA/2 progenitor. However, it remained possible that epigenetic effects could account for the MCMV phenotype in BXD-8 mice. Herein, we report the generation of a novel congenic murine strain, B6.BXD8-Klra8 ( Cmv1-del )/Wum, on the C57BL/6 genetic background to evaluate the effect of deletion of a single NK activation receptor, Ly49H. Deletion of Ly49H rendered mice much more susceptible to MCMV infection. This increase in susceptibility did not appear to be a result of a difference in NK cell expansion or interferon-gamma (IFN-gamma) production between the C57BL/6 and the B6.BXD8 strains. On the other hand, the deletion of Ly49h did not otherwise affect NK cell maturation or Ly49D expression and had no effect on susceptibility to HSV-1 or ectromelia virus. In conclusion, Ly49h is necessary for genetic resistance to MCMV, but not HSV-1 or ectromelia virus.  相似文献   

12.
The asebia (ab) mutation in the mouse is an autosomal recessive trait with hypoplastic sebaceous glands. As a first step toward cloning the ab gene, we report here the genetic mapping of the ab locus with respect to Chromosome 19 microsatellite markers. 644 backcross progeny were generated by mating (CAST/EiJ × DBA/1LacJ-ab2J/ab2J) F1 heterozygous females and parental ab2J/ab2J mutant males. Our results located the ab gene to an interval of 1.6 cM on mouse Chromosome 19 defined by flanking markers D19Mit11 and D19Mit53/D19Mit27, and identified a tightly linked polymorphic marker, D19Mit67, that co-segregates with the mutation in the backcross progeny examined. This places ab locus 4 cM distal to its present position as indicated in Mouse Genome Database at The Jackson Laboratory. We have also mapped a yeast artificial chromosome (YAC) contig in this locus interval which suggests the ab interval to be less than one megabase of DNA.  相似文献   

13.
14.
The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2(k), we generated double congenic mice between MA/My and BALB.K mice and an F(2) cross between FVB/N (H-2(q)) and BALB.K (H2(k)) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2(k) in conjunction with Cmv3(MA/My) or Cmv3(FVB) were resistant to MCMV infection. Subsequently, an F(3) cross was carried out between transgenic FVB/H2-D(k) and MHC-I deficient mice in which only the progeny expressing Cmv3(FVB) and a single H2-D(k) class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell-dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2(q) alleles influence the expression level of H2(q) molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2(q) alleles. Our results support a model in which H-2(q) molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-D(k) on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell-mediated control of viral load.  相似文献   

15.
16.
Mouse strains are either resistant or susceptible to murine cytomegalovirus (MCMV). Resistance is determined by the Cmv1(r) (Ly49h) gene, which encodes the Ly49H NK cell activation receptor. The protein encoded by the m157 gene of MCMV has been defined as a ligand for Ly49H. To find out whether the m157 protein is the only Ly49H ligand encoded by MCMV, we constructed the m157 deletion mutant and a revertant virus. Viruses were tested for susceptibility to NK cell control in Ly49H+ and Ly49H- mouse strains. Deletion of the m157 gene abolished the viral activation of Ly49H+ NK cells, resulting in higher virus virulence in vivo. Thus, in the absence of m157, Ly49H+ mice react like susceptible strains. 129/SvJ mice lack the Ly49H activation NK cell receptor but express the inhibitory Ly49I NK cell receptor that binds to the m157 protein. The Deltam157 inhibitory phenotype was weak because MCMV encodes a number of proteins that mediate NK inhibition, whose contribution could be shown by another mutant.  相似文献   

17.
The Chediak-Higashi syndrome (CHS) is a severe autosomal recessive condition, features of which are partial oculocutaneous albinism, increased susceptibility to infections, deficient natural killer cell activity, and the presence of large intracytoplasmic granulations in various cell types. Similar genetic disorders have been described in other species, including the beige mouse. On the basis of the hypothesis that the murine chromosome 13 region containing the beige locus was homologous to human chromosome 1, we have mapped the CHS locus to a 5-cM interval in chromosome segment 1q42.1-q42.2. The highest LOD score was obtained with the marker D1S235 (Zmax = 5.38; theta = 0). Haplo-type analysis enabled us to establish D1S2680 and D1S163, respectively, as the telomeric and the centromeric flanking markers. Multipoint linkage analysis confirms the localization of the CHS locus in this interval. Three YAC clones were found to cover the entire region in a conting established by YAC end-sequence characterization and sequence-tagged site mapping. The YAC contig contains all genetic markers that are nonrecombinant for the disease in the nine CHS families studied. This mapping confirms the previous hypothesis that the same gene defect causes CHS in human and beige pheno-type in mice and provides a genetic framework for the identification of candidate genes.  相似文献   

18.
The tomato (Lycopersicon esculentum) Bs4 gene confers resistance to strains of Xanthomonas campestris pathovar vesicatoria that express the avirulence protein AvrBs4. As part of a map-based cloning strategy for the isolation of Bs4, we converted Bs4-linked amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers into locus-specific sequence-tagged-site (STS) markers. The use of these markers for the analysis of 1972 meiotic events allowed high-resolution genetic mapping within a 1.2-cM interval containing the target gene. Two tomato yeast artificial chromosome (YAC) clones, each harboring inserts of approximately 250 kb, were identified using the marker most closely linked to Bs4. YAC end-specific markers were established and employed to construct a local YAC contig. The ratio of physical to genetic distance at Bs4 was calculated to be 280 kb/cM, revealing that recombination rates in this region are about three times higher than the genome-wide average. Mapping of YAC end-derived markers demonstrated that the Bs4 locus maps within a region of 250 kb, corresponding to a genetic interval of 0.9 cM.  相似文献   

19.
Human CMV infections are a major health risk in patients with dysfunctional or compromised immunity, especially in patients with NK cell deficiencies, as these are frequently associated with high morbidity and mortality. In experimental murine CMV (MCMV) infections, Ly49H activation receptors on C57BL/6 (B6) NK cells engage m157 viral ligands on MCMV-infected cells and initiate dominant virus control. In this study, we report that MCMV resistance in MA/My relies on Ly49H-independent NK cell-mediated control of MCMV infection as NK cells in these mice do not bind anti-Ly49H mAb or soluble m157 viral ligands. We genetically compared MA/My resistance with MCMV susceptibility in genealogically and NK gene complex-Ly49 haplotype-related C57L mice. We found that MCMV resistance strongly associated with polymorphic H2k-linked genes, including MHC and non-MHC locations by analysis of backcross and intercross progeny. The H2b haplotype most frequently, but not absolutely, correlated with MCMV susceptibility, thus confirming a role for non-MHC genes in MCMV control. We also demonstrate a definite role for NK cells in H2k-type MCMV resistance because their removal from C57L.M-H2k mice before MCMV infection diminished immunity. NK gene complex-linked polymorphisms, however, did not significantly influence MCMV control. Taken together, effective NK cell-mediated MCMV control in this genetic system required polymorphic H2k genes without need of Ly49H-m157 interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号