首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological character displacement—trait evolution stemming from selection to lessen resource competition between species—is most often inferred from a pattern in which species differ in resource-use traits in sympatry but not in allopatry, and in which sympatric populations within each species differ from conspecific allopatric populations. Yet, without information on population history, the presence of a divergent phenotype in multiple sympatric populations does not necessarily imply that there has been repeated evolution of character displacement. Instead, such a pattern may arise if there has been character displacement in a single ancestral population, followed by gene flow carrying the divergent phenotype into multiple, derived, sympatric populations. Here, we evaluate the likelihood of such historical events versus ongoing ecological selection in generating divergence in trophic morphology between multiple populations of spadefoot toad (Spea multiplicata) tadpoles that are in sympatry with a heterospecific and those that are in allopatry. We present both phylogenetic and population genetic evidence indicating that the same divergent trait, which minimizes resource competition with the heterospecific, has arisen independently in multiple sympatric populations. These data, therefore, provide strong indirect support for competition''s role in divergent trait evolution.  相似文献   

2.
Species competing for resources also commonly share predators. While competition often drives divergence between species, the effects of shared predation are less understood. Theoretically, competing prey species could either diverge or evolve in the same direction under shared predation depending on the strength and symmetry of their interactions. We took an empirical approach to this question, comparing antipredator and trophic phenotypes between sympatric and allopatric populations of threespine stickleback and prickly sculpin fish that all live in the presence of a trout predator. We found divergence in antipredator traits between the species: in sympatry, antipredator adaptations were relatively increased in stickleback but decreased in sculpin. Shifts in feeding morphology, diet and habitat use were also divergent but driven primarily by stickleback evolution. Our results suggest that asymmetric ecological character displacement indirectly made stickleback more and sculpin less vulnerable to shared predation, driving divergence of antipredator traits between sympatric species.  相似文献   

3.
Character shifts in the defensive armor of sympatric sticklebacks   总被引:6,自引:0,他引:6  
Natural enemies may contribute to the morphological divergence of sympatric species, yet their role has received little attention to date. We tested for character shifts in defensive armor of sympatric threespine sticklebacks (Gasterosteus aculeatus complex) previously shown to exhibit ecological character displacement in traits related to resource use. We scored five defensive armor traits in sympatric benthic and limnetic stickleback species from southwestern British Columbia and compared them with the same traits in nearby allopatric populations in the presence of the same predatory fish (Oncorhynchus sp.). This approach is analogous to tests of ecological character displacement that compare trophic traits of sympatric and allopatric species in the presence of the same community of resource types. Three patterns consistent with character displacement in defensive armor were found. First, limnetics in different lakes had consistently more armor than sympatric benthics. Second, the average amount of armor, averaged over both species, was reduced in sympatry compared to allopatric populations. This reduction was almost entirely the result of shifts by benthic species, whereas armor in limnetics was more similar to that in allopatric populations. Third, differences between sympatric benthics and limnetics in total armor were greater than expected from comparisons with allopatric populations. We interpret these patterns as the result of differences in habitat-specific predation regimes accompanying ecological character displacement and indirect interactions between sympatric stickleback species mediated by their top predators. These results suggest that predation may facilitate, rather than hinder, the process of divergence in sympatry.  相似文献   

4.
This paper considers the patterns of shell shape variation shown by Nucella canalicuata, N. emarginata and N. lamellosa from two areas of the Pacific Northwest: the shores near Friday Harbour on San Juan Island and near Bamfield on the west coast of Vancouver Island. No clear pattern of variation in association with changes in exposure was seen in either N. canaliculata or N. lamellosa . It appears that genetic influences are more important controls of shell shape than environmental selection in both these species. Nucella emarginata shows the nearest approximation to the pattern shown by the Atlantic species, N. lapillus , but only at the exposed end of the wave-action gradient. On those shores, enclaves from the most surf-washed open coast headlands have shells with proportionally larger apertures (and thus a shorter, squatter form) than their equivalents in local shelter. But, unlike in N. lapillus , the trend does not continue onto genuinely sheltered shores. Under these circumstances the species is generally rare and, where enclaves do occur, their shells are of much the same shape (although of a much larger size) as in more exposed situations.  相似文献   

5.
Despite long-standing interest in character displacement, little is known of its underlying proximate causes. Here, we explore the role of maternal effects in character displacement. We specifically investigated whether differences in maternal body condition mediate divergence in the expression of resource-use traits between populations of spadefoot toads ( Spea multiplicata ) that occur in sympatry with a heterospecific competitor and those that occur in allopatry. In sympatry, S. multiplicata is forced by its competitor onto a less profitable resource. As a result, sympatric females mature in poorer condition and invest less into offspring. Consequently, their offspring produce a resource-use phenotype that minimizes competition with the other species and that also differs from the phenotype produced in allopatry. These differences in trait expression between allopatry and sympatry disappear once mothers are equilibrated in body condition in the laboratory. Thus, a condition-dependent maternal effect mediates population divergence and character displacement. Such effects potentially buffer populations from extinction (via competitive exclusion) while genetic changes accumulate, which produce divergent traits in the absence of the maternal effect. Maternal effects may therefore often be important in determining the initial direction and rate of evolution during the early stages of character displacement.  相似文献   

6.
1. The competitive interactions of closely related species have long been considered important determinants of community composition and a major cause of phenotypic diversification. However, while patterns such as character displacement are well documented, less is known about how local adaptation influences diversifying selection from interspecific competition. 2. We examined body size and head shape variation among allopatric and sympatric populations of two salamander species, the widespread Plethodon cinereus and the geographically restricted P. nettingi. We quantified morphology from 724 individuals from 20 geographical localities throughout the range of P. nettingi. 3. Plethodon nettingi was more robust in cranial morphology relative to P. cinereus, and sympatric localities were more robust relative to allopatric localities. Additionally, there was significantly greater sympatric head shape divergence between species relative to allopatric communities, and sympatric localities of P. cinereus exhibited greater morphological variation than sympatric P. nettingi. 4. The sympatric morphological divergence and increase in cranial robustness of one species (P. nettingi) were similar to observations in other Plethodon communities, and were consistent with the hypothesis of interspecific competition. These findings suggest that interspecific competition in Plethodon may play an important role in phenotypic diversification in this group. 5. The increase in among-population variance in sympatric P. cinereus suggests a species-specific response to divergent natural selection that is influenced in part by other factors. We hypothesize that enhanced morphological flexibility and ecological tolerance allow P. cinereus to more rapidly adapt to local environmental conditions, and initial differences among populations have allowed the evolutionary response of P. cinereus to vary across replicate sympatric locations, resulting in distinct evolutionary trajectories of morphological change.  相似文献   

7.
The role of ecological factors in promoting morphological diversity within and among species is an area of debate among evolutionary biologists. Using morphological differences between sympatric species as evidence that competition promotes divergence (e.g., character displacement), has, in particular, drawn harsh criticism because morphological differences may have evolved during allopatry. In contrast to species, alternative phenotypes within a species have a common phylogenetic history, so differences between phenotypes are likely to result from ecological conditions experienced in sympatry. Using cannibal and typical larval phenotypes of the Arizona tiger salamander, Ambystoma tigrinum nebulosum, we tested two predictions of the hypothesis that resource competition promotes morphological divergence: (1) larval phenotypes should reduce competition by using different resources; and (2) the advantage to developing the alternative, cannibal phenotype should be highest when competition among typical larvae is most intense. We used field surveys and a field experiment to test these predictions. The two larval phenotypes used different resources, especially when competition was intense. The advantage to individual larvae of becoming cannibals was highest when competition for resources among typical larvae was high. These results support the hypothesis that resource competition can promote morphological divergence.  相似文献   

8.
Some of the diversity of lacustrine cichlid fishes has been ascribed to sympatric divergence, whereas diversification in rivers is generally driven by vicariance and geographic isolation. In the riverine Pseudocrenilabrus philander species complex, several morphologically highly distinct populations are restricted to particular river systems, sinkholes and springs in southern Africa. One of these populations consists of a prevalent yellow morph in sympatry with a less frequent blue morph, and no individuals bear intermediate phenotypes. Genetic variation in microsatellites and AFLP markers was very low in both morphs and one single mtDNA haplotype was fixed in all samples, indicating a very young evolutionary age and small effective population size. Nevertheless, the nuclear markers detected low but significant differentiation between the two morphs. The data suggest recent and perhaps sympatric divergence in the riverine habitat.  相似文献   

9.
Marko PB 《Molecular ecology》2004,13(3):597-611
In marine environments, many species have apparently colonized high latitude regions following the last glacial maximum (LGM) yet lack a life-history stage, such as a free-living larva, that is clearly capable of long-distance dispersal. Two hypotheses can explain the modern high latitude distributions of these marine taxa: (1) survival in northern refugia during the LGM or (2) rapid post-glacial dispersal by nonlarval stages. To distinguish these two scenarios, I characterized the genetic structure of two closely related northeastern Pacific gastropods that lack planktonic larvae but which have distributions extending more than 1000 km north of the southern limit of glaciers at the LGM. Despite having identical larval dispersal potential, these closely related species exhibit fundamentally different patterns of genetic structure. In Nucella ostrina, haplotype diversity among northern populations (British Columbia and Alaska) is low, no pattern of isolation by distance exists and a coalescent-based model of population growth indicates that during the LGM population size was reduced to less than 35% of its current size. In the congeneric and often sympatric N. lamellosa, northern populations harbour a diversity of ancient private haplotypes, significant evidence of isolation by distance exists and regional subdivision was found between northern (Alaska) and southern (southern British Columbia, Washington and Oregon) populations. Estimates of coalescent parameters indicate only a modest reduction in population size during the LGM and that northern and southern populations of N. lamellosa split approximately 50 Kyr before the LGM. The patterns are consistent with the hypothesis that N. ostrina recently reinvaded the northeastern Pacific but N. lamellosa survived the LGM in a northern refuge. A comparison of similar studies in this region indicates that depleted levels of genetic variation at high latitudes--evidence suggestive of recent colonization from a southern refuge--is more common among intertidal species that live relatively high on the shore, where exposure times to cold stress in air are longer than for species living lower on the shore. These data suggest that for some faunas, ecological differences between taxa may be more important than larval dispersal potential in determining species' long-term biogeographical responses to climate change.  相似文献   

10.
Two recently diverged northeastern Pacific sibling snail species, Nucella ostrina and N. emarginata, currently inhabit adjacent zoogeographic provinces. Their distributions overlap in central California to the north of a major faunal boundary at Point Conception, California (PC). To test the hypothesis that modern sympatry is due to a recent northward range expansion by N. emarginata, I analyzed the population structures of both species with nuclear (allozyme) and mitochondrial DNA (mtDNA) markers. Populations of N. emarginata in the region of overlap exhibit significantly lower heterozygosity and allelic diversity than either populations to the south of PC or populations of N. ostrina. A single mtDNA haplotype characterizes all but one population of N. emarginata sampled in this region, but no haplotype to the south of PC is found at more than one locality. MtDNA haplotypes and allozyme allele frequencies also indicate monophyly of central California populations of N. emarginata. Sharp differences in allelic diversity over small geographic distances may reflect the action of natural selection, but because both nuclear and mtDNA markers display concordant patterns, a range expansion across PC best explains patterns of genetic variation in N. emarginata. Allozymes and mtDNA also reveal that the geologically older N. ostrina is paraphyletic with respect to N. emarginata. This pattern is consistent with, but not indicative of, a peripheral isolation model of speciation. Low genetic diversity is also expected if a significant bottleneck occurred at speciation. However, low allelic diversity is not universal throughout the geographic range of N. emarginata; high allelic diversity at the southern end of the distribution of N. emarginata suggests that in the past N. emarginata has been geographically restricted much further south than PC. A northward range expansion across PC by N. emarginata may thus represent only the most recent postglacial movement by the species. The thermal and oceanographic discontinuities found at PC may not have been directly involved in geographic isolation if N. emarginata originated much further south of this modern boundary. Despite uncertainty regarding the exact spatial distribution of populations at speciation, genetic data indicate that even though N. ostrina and N. emarginata currently exhibit a broad range of geographic overlap, speciation was likely allopatric and was initiated by physical isolation of populations in different zoogeographic provinces.  相似文献   

11.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

12.
Environmental factors and competition in closely related sympatric species may result in character displacement or phenotypic convergence. We studied the effects of sympatry on size and shape of the skulls, mandibles and molars in two species of water shrew, Neomys anomalus and Neomys fodiens . We studied populations from six localities in Poland, three where the species are sympatric (Pomorze, Białowieża, and Bieszczady Mts) and three where only N. fodiens is found. We studied shape and size using geometrical landmarks. The three morphological structures that we studied are expected to respond differently to environment and competition, because they are controlled by different numbers of gene loci, have different developmental patterns and different functional roles. We found strong evidence that shape in all three structures was influenced by local environment and that both species responded to geoclimatic factors in the same way. Indirect evidence suggests that the parallel response of the two species is likely to be ecophenotypic in the case of skulls and mandibles but selective in molars. We found no evidence for character displacement in either size or shape, although significant differences were found between the two species as a whole, and within species between localities. Not only was there any evidence for displacement but also the species were actually more similar when they occurred in sympatry, probably because of the similar ecophenotypic responses to their shared environment.  相似文献   

13.
Melo M  Warren BH  Jones PJ 《Molecular ecology》2011,20(23):4953-4967
Archipelago-endemic bird radiations are familiar to evolutionary biologists as key illustrations of evolutionary patterns. However, such radiations are in fact rare events. White-eyes (Zosteropidae) are birds with an exceptionally high colonization and speciation potential; they have colonized more islands globally than any other passerine group and include the most species-rich bird genus. The multiplication of white-eye island endemics has been consistently attributed to independent colonizations from the mainland; the white-eyes of the Gulf of Guinea archipelago had been seen as a classic case, spanning as great a breadth of phenotypic diversity as the family worldwide. Contrary to this hypothesis, our molecular phylogenetic analysis places the Gulf of Guinea white-eyes in just two radiations, one grouping all five oceanic island taxa and the other grouping continental island and land-bridge taxa. Numerous 'aberrant' phenotypes (traditionally grouped in the genus Speirops) have evolved independently over a short space of time from nonaberrant (Zosterops) phenotypes; the most phenotypically divergent species have separated as recently as 0.22 Ma. These radiations rival those of Darwin's finches and the Hawaiian honeycreepers in terms of the extent of adaptive radiation per unit time, both in terms of species numbers and in terms of phenotypic diversity. Tempo and patterns of morphological divergence are strongly supportive of an adaptive radiation in the oceanic islands driven by ecological interactions between sympatric white-eyes. Here, very rapid phenotypic evolution mainly affected taxa derived from the youngest wave of colonization, in accordance with the model of asymmetric divergence owing to resource competition in sympatry.  相似文献   

14.
Divergence in reproductive traits between closely related species that co‐occur contributes to speciation by reducing interspecific gene flow. In flowering plants, greater floral divergence in sympatry than allopatry may reflect reproductive character displacement (RCD) by means of divergent pollinator‐mediated selection or mating system evolution. However, environmental filtering (EF) would prevail for floral traits under stronger selection by abiotic factors than pollination, and lead to sympatric taxa being more phenotypically similar. We determine whether floral UV pigmentation and size show signatures of RCD or EF using a biogeographically informed sister taxa comparison. We determine whether 35 sister pairs in the Potentilleae tribe (Rosaceae) are allopatric or sympatric and confirm that sympatric sisters experience more similar bioclimatic conditions, an assumption of the EF hypothesis. We test whether interspecific differences are greater in allopatry or sympatry while accounting for divergence time. For UV pigmentation, sympatric sisters are more phenotypically similar than allopatric ones. For flower size, sympatric sisters show increased divergence with time since speciation but allopatric ones do not. We conclude that floral UV pigmentation shows a signature of EF, whereas flower size shows a signature of RCD. Discordant results between the traits suggest that the dominant selective agent differs between them.  相似文献   

15.
It is well known that closely related sympatric species are usually more different in characters involved in species recognition (e.g., in visual and acoustic signals) than allopatric species of the same evolutionary age. In this article I call this phenomenon Dobzhansky's rule in accordance with the name of the scientist who first discovered it. There are two alternative explanations for this pattern. Under hypothesis of reinforcement by Dobzhansky, these species-specific differences evolve in situ, exactly in zone of overlap between two populations. Under hypothesis of differential fusion by Templeton, the differences originate in geographically separated regions, and only those populations that have evolved such differences can persist in secondary sympatry. These evolutionary scenarios are significantly different. The scenario by Dobzhansky is an essentially sympatric model, in which natural selection reinforces pre-zygotic isolation between divergent populations by selecting against unfit hybrids. The scenario by Templeton is based on classic allopatric speciation model that consider the formation of reproductive isolation to be a by-product of divergent evolution. In this work we show that the sympatric distribution of sister taxa of Agrodiaetus butterflies strongly correlates with differences in male wing colour. We also use a new quantitative phylogenetic test to distinguish between the models by Dobzhansky and by Templeton and to demonstrate that the pattern observed is, most likely, the result of reinforcement.  相似文献   

16.
Differences in body size are widely thought to allow closely related species to coexist in sympatry, but body size also varies as an adaptive response to climate. Here, we use a sister lineage approach to test the prediction that body size differences between closely related species of birds worldwide are greater for species whose ranges are sympatric rather than allopatric. We further test if body size differences among sympatric versus allopatric species vary with geography, evolutionary distance, and environmental temperatures. We find greater differences in size among sympatric compared with allopatric lineages, but only in closely related species that live where mean annual temperatures are above 25°C. These size differences in warm environments declined with the evolutionary distance between sister lineages. In species living in cooler regions, closely related allopatric and sympatric species did not differ significantly in size, suggesting either that colder temperatures constrain the evolutionary divergence of size in sympatry, or that the biotic selective pressures favoring size differences in sympatry are weaker in colder environments. Our results are consistent with suggestions by Wallace, Darwin, and Dobzhansky that climatic selective pressures are more important in cooler environments (e.g., high elevations and latitudes) whereas biotic selective pressures dominate in warm environments (e.g., lowland tropics).  相似文献   

17.
In the eastern United States the wood cricket Gryllus fultoni (Orthoptera: Gryllidae) occurs in sympatry with G. vernalis in an area between eastern Kansas and west of the Appalachian Mountains. Calling songs were recorded from 13 sympatric and allopatric localities. Both field and laboratory recordings showed that chirp rate (CR) and pulse rate (PR) overlapped extensively between allopatric populations of G. fultoni and sympatric populations of G. vernalis; by contrast, there was little or no overlap in these variables between sympatric populations of these two species. Divergence in PR and CR between the two species was thus greater in areas of sympatry than in areas of allopatry. Our field and laboratory studies of G. fultoni calling songs thus demonstrate the pattern expected of character displacement and support the genetic assumptions of this hypothesis. Other possible explanations for the sympatric divergence such as ecological character displacement and clinal variation are discussed.  相似文献   

18.
Understanding the joint evolutionary and ecological underpinnings of sympatry among close relatives remains a key challenge in biology. This problem can be addressed through joint phylogenomic and phenotypic analysis of complexes of closely related lineages within, and across, species and hence representing the speciation continuum. For a complex of tropical geckos from northern Australia—Gehyra nana and close relatives—we combine mtDNA phylogeography, exon‐capture sequencing, and morphological data to resolve independently evolving lineages and infer their divergence history and patterns of morphological evolution. Gehyra nana is found to include nine divergent lineages and is paraphyletic with four other species from the Kimberley region of north‐west Australia. Across these 13 taxa, 12 of which are restricted to rocky habitats, several lineages overlap geographically, including on the diverse Kimberley islands. Morphological evolution is dominated by body size shifts, and both body size and shape have evolved gradually across the group. However, larger body size shifts are observed among overlapping taxa than among closely related parapatric lineages of G. nana, and sympatric lineages are more divergent than expected at random. Whether elevated body size differences among sympatric lineages are due to ecological sorting or character displacement remains to be determined.  相似文献   

19.
Endemic land snails of the genus Mandarina of the oceanic Bonin Islands offer an exceptional example of habitat and character divergence among closely related species. In this study, microhabitat differences between sympatric ground-dwelling species were studied by distinguishing habitats on the basis of vegetation and types of litter. In all sites where two ground species coexisted, segregation occurred with each species showing preference for the microhabitat in which they were found. When they were in sympatry, one species was predominant in relatively wet and sheltered sites and the other in relatively dry and exposed sites. Although most species can live in both types of habitat, occupation by one species is inhibited by occupation by another. This suggests that competitive interaction between sympatric species caused segregation. Except for populations that have undergone interspecific hybridization, no examples were found of sympatric populations of two ground species sharing a similar shell colour. Species that were predominant in relatively wet and sheltered sites possessed shells with dark coloration and their colour patterns were mostly of one type. Species that were predominant in relatively dry and exposed sites possessed shells with bright coloration and their color patterns were polymorphic. Most populations from areas in which single species were distributed had shells with medium coloration. Microhabitat differentiation between sympatric species possibly caused diversification of shell colour, because bright shells are advantageous in sites where snails are largely exposed, and dark shells are advantageous in sites in where they are mostly sheltered from sunlight. In addition, frequency-dependent selection by predators hunting by sight may have operated to maintain colour polymorphism in the populations which are restricted to exposed habitats by competition with other sympatric species. This reveals the importance of interaction among closely related species as a cause of diversification in ecological and morphological traits.  相似文献   

20.
Allopatric speciation often yields ecologically equivalent sister species, so that their secondary admixis enforces competition. The shores of Lake Tanganyika harbor about 120 distinct populations of the cichlid genus Tropheus, but only some are sympatric. When alone, Tropheus occupies a relatively broad depth zone, but in sympatry, fish segregate by depth. To assess the effects of competition, we studied the partial co-occurrence of Tropheus moorii ‘Kaiser'' and ‘Kirschfleck'' with Tropheus polli. A previous study demonstrated via standardized breeding experiments that some observed differences between Tropheus ‘Kaiser'' living alone and in sympatry with T. polli have a genetic basis despite large-scale phenotypic plasticity. Using geometric morphometrics and neutral genetic markers, we now investigated whether sympatric populations differ consistently in body shape from populations living alone and if the differences are adaptive. We found significant differences in mean shape between non-sympatric and sympatric populations, whereas all sympatric populations of both color morphs clustered together in shape space. Sympatric populations had a relatively smaller head, smaller eyes and a more anterior insertion of the pectoral fin than non-sympatric populations. Genetically, however, non-sympatric and sympatric ‘Kaiser'' populations clustered together to the exclusion of ‘Kirschfleck''. Genetic distances, but not morphological distances, were correlated with geographic distances. Within- and between-population covariance matrices for T. moorii populations deviated from proportionality. It is thus likely that natural selection acts on both phenotypic plasticity and heritable traits and that both factors contribute to the observed shape differences. The consistency of the pattern in five populations suggests ecological character displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号