首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The stabilizing effects of dangling ends and terminal base pairs on the core helix GCGC are reported. Enthalpy and entropy changes of helix formation were measured spectrophotometrically for AGCGCU, UGCGCA, GGCGCCp, CGCGCGp, and the corresponding pentamers XGCGCp and GCGCYp containing the GCGC core plus a dangling end. Each 5' dangling end increases helix stability at 37 degrees C roughly 0.2 kcal/mol and each 3' end from 0.8 to 1.7 kcal/mol. The free energy increments for dangling ends on GCGC are similar to the corresponding increments reported for the GGCC core [Freier, S. M., Alkema, D., Sinclair, A., Neilson, T., & Turner, D. H. (1985) Biochemistry 24, 4533-4539], indicating a nearest-neighbor model is adequate for prediction of stabilization due to dangling ends. Nearest-neighbor parameters for prediction of the free energy effects of adding dangling ends and terminal base pairs next to G.C pairs are presented. Comparison of these free energy changes is used to partition the free energy of base pair formation into contributions of "stacking" and "pairing". If pairing contributions are due to hydrogen bonding, the results suggest stacking and hydrogen bonding make roughly comparable favorable contributions to the stability of a terminal base pair. The free energy increment associated with forming a hydrogen bond is estimated to be -1 kcal/mol of hydrogen bond.  相似文献   

2.
Improved free energies for G.C base-pairs   总被引:2,自引:0,他引:2  
Thermodynamic parameters of helix formation are reported for seven oligoribonucleotides containing only G.C pairs. These data are used with the nearest-neighbor model to calculate enthalpies and free energies of base-pair formation for G.C pairs. For helix initiation, the free energy change at 37 degrees C, delta G(0)37, is +3.9 kcal/mol; for helix propagation, the delta G(0)37 values are -2.3, -3.2 and -3.3 kcal/mol for C-G, G-G and G-C neighbors, respectively.  相似文献   

3.
N Sugimoto  R Kierzek  D H Turner 《Biochemistry》1987,26(14):4559-4562
Stability increments of terminal mismatches on the core helixes AUGCAU and UGCGCA are reported. Enthalpy, entropy, and free energy changes of helix formation were measured spectrophotometrically for 15 oligoribonucleotides containing the core sequences and various mismatches. Free energy increments for mismatches in this series range from -0.5 to -1.1 kcal/mol. These increments for mismatches on AU base pairs are smaller than those measured previously on GC base pairs [Freier, S.M., Kierzek, R., Caruthers, M.H., Neilson, T., & Turner, D.H. (1986) Biochemistry 25, 3209-3213]. The terminal GU mismatches in the sequences GAUGCAUUp and UAUGCAUGp add approximately the same stability increment as the corresponding terminal AU mismatch. The stability increments for pyrimidine-pyrimidine and pyrimidine-purine mismatches can be approximated within 0.3 kcal/mol by adding the stability increments for the corresponding 3' and 5' unpaired nucleotides (dangling ends). Stability increments for purine-purine mismatches are approximated well by the stability increment for the corresponding 3' dangling end made more favorable by 0.2 kcal/mol. These approximations are used to provide a table of stability increments for all 48 possible sequences of mismatches.  相似文献   

4.
Vecenie CJ  Morrow CV  Zyra A  Serra MJ 《Biochemistry》2006,45(5):1400-1407
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.  相似文献   

5.
RNA hairpin loop stability depends on closing base pair.   总被引:7,自引:4,他引:3       下载免费PDF全文
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequences of the type GGXAUAAUAYCC, where X and Y are CG, GC, AU, UA, GU, or UG. A nearest neighbor analysis of the data indicates the free energy change for loop formation at 37 degrees C, delta degrees Gl,37, averages 3.4 kcal/mol for hairpin loops closed with C.G, G.C, and G.U pairs. In contrast, delta G degree l,37 averages 4.6 kcal/mol for loops closed with A.U, U.A, or U.G pairs. Thus the stability of an RNA hairpin depends on the closing base pair. The hairpin with a GA mismatch that is formed by GGCGUAAUAGCC is more stable than the corresponding hairpin with an AA mismatch. Thus hairpin stability also depends on loop sequence. These effects are not included in current algorithms for prediction of RNA structure from sequence.  相似文献   

6.
7.
Free energies for stacking of unpaired nucleotides (dangling ends) at the termini of oligoribonucleotide Watson-Crick helixes (DeltaG(0)37,stack) depend on sequence for 3' ends but are always small for 5' ends. Here, these free energies are correlated with stacking at helix termini in a database of 34 RNA structures determined by X-ray crystallography and NMR spectroscopy. Stacking involving GA pairs is considered separately. A base is categorized as stacked by its distance from (相似文献   

8.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

9.
Thermodynamic measurements are reported for 51 DNA duplexes with A.A, C.C, G.G, and T.T single mismatches in all possible Watson-Crick contexts. These measurements were used to test the applicability of the nearest-neighbor model and to calculate the 16 unique nearest-neighbor parameters for the 4 single like with like base mismatches next to a Watson-Crick pair. The observed trend in stabilities of mismatches at 37 degrees C is G.G > T.T approximately A.A > C.C. The observed stability trend for the closing Watson-Crick pair on the 5' side of the mismatch is G.C >/= C.G >/= A.T >/= T.A. The mismatch contribution to duplex stability ranges from -2.22 kcal/mol for GGC.GGC to +2.66 kcal/mol for ACT.ACT. The mismatch nearest-neighbor parameters predict the measured thermodynamics with average deviations of DeltaG degrees 37 = 3.3%, DeltaH degrees = 7. 4%, DeltaS degrees = 8.1%, and TM = 1.1 degrees C. The imino proton region of 1-D NMR spectra shows that G.G and T.T mismatches form hydrogen-bonded structures that vary depending on the Watson-Crick context. The data reported here combined with our previous work provide for the first time a complete set of thermodynamic parameters for molecular recognition of DNA by DNA with or without single internal mismatches. The results are useful for primer design and understanding the mechanism of triplet repeat diseases.  相似文献   

10.
N Sugimoto  R Kierzek  D H Turner 《Biochemistry》1987,26(14):4554-4558
Stability increments of terminal unpaired nucleotides (dangling ends) and terminal base pairs on the core helixes AUGCAU and UGCGCA are reported. Enthalpy, entropy, and free energy changes of helix formation were measured spectrophotometrically for 18 oligoribonucleotides containing the core sequences. The results indicate 3' dangling purines add more stability than 3' dangling pyrimidines. In most cases, the additional stability from a 3' dangling end on an AU base pair is less than that on a GC base pair [Freier, S.M., Burger, B.J., Alkema, D., Neilson, T., & Turner, D.H. (1985) Biochemistry 22, 6198-6206]. The sequence dependence provides a test for the importance of dangling ends for various RNA interactions. Correlations are suggested with codon context effects and with the three-dimensional structure of yeast phenylalanine transfer RNA. In the latter case, all terminal unpaired nucleotides having stability increments more favorable than -1 kcal/mol are stacked on the adjacent base pair. All terminal unpaired nucleotides having stability increments less favorable than -0.3 kcal/mol are not stacked on the adjacent base pair. In several cases, this lack of stacking is associated with a turn in the sugar-phosphate backbone. This suggests stability increments measured on oligoribonucleotides may be useful for predicting tertiary structure in large RNA molecules. Comparison of the stability increments for terminal dangling ends and base pairs, and of terminal GC and AU base pairs, indicates the free energy increment associated with forming a hydrogen bond can be about -1 kcal/mol of hydrogen bond.  相似文献   

11.
Davis AR  Znosko BM 《Biochemistry》2007,46(46):13425-13436
Many naturally occurring RNA structures contain single mismatches. However, the algorithms currently used to predict RNA structure from sequence rely on a minimal set of data for single mismatches, most of which occur rather infrequently in nature. As a result, several approximations and assumptions are used to predict the stability of RNA duplexes containing the most common single mismatches. Therefore, the relative frequency of single mismatches was determined by compiling and searching a database of 955 RNA secondary structures. Thermodynamic parameters for duplex formation, derived from optical melting experiments, are reported for 28 oligoribonucleotides containing frequently occurring single mismatches. These data were then combined with previous data to construct a dataset of 64 single mismatches, including the 30 most common in the database. Because of this increase in experimental thermodynamic parameters for single mismatches that occur frequently in nature, more accurate free energy calculations have resulted. To improve the prediction of the thermodynamic parameters for duplexes containing single mismatches that have not been experimentally measured, single mismatch-specific nearest neighbor parameters were derived. The free energy of an RNA duplex containing a single mismatch that has not been thermodynamically characterized can be calculated by: DeltaG degrees 37,single mismatch = DeltaG degrees 37,mismatch nt + DeltaG degrees 37,mismatch-NN interaction + DeltaG degrees 37,AU/GU. Here, DeltaG degrees 37,mismatch is -0.4, -2.1, and -0.3 kcal/mol for A.G, G.G, and U.U mismatches, respectively; DeltaG degrees 37,mismatch-NN interaction is 0.7, -0.5, 0.4, -0.4, and -1.0 kcal/mol for 5'YRR3'/3'RRY5', 5'RYY3'/3'YYR5', 5'YYR3'/3'RYY5', 5'YRY3'/3'RYR5', and 5'RRY3'/3'YYR5' mismatch-nearest neighbor combinations, respectively, when A and G are categorized as purines (R) and C and U are categorized as pyrimidines (Y); and DeltaG degrees 37,AU/GU is a penalty of 1.2 kcal/mol for replacing a G-C base pair with either an A-U or G-U base pair. Similar predictive models were also derived for DeltaH degrees single mismatch and DeltaS degrees single mismatch. These new predictive models, in conjunction with the reported thermodynamics for frequently occurring single mismatches, should allow for more accurate calculations of the free energy of RNA duplexes containing single mismatches and, furthermore, allow for improved prediction of secondary structure from sequence.  相似文献   

12.
Thermodynamics of single mismatches in RNA duplexes   总被引:4,自引:0,他引:4  
Kierzek R  Burkard ME  Turner DH 《Biochemistry》1999,38(43):14214-14223
The thermodynamic properties and structures of single mismatches in short RNA duplexes were studied in optical melting and imino proton NMR experiments. The free energy increments at 37 degrees C measured for non-GU single mismatches range from -2.6 to 1.7 kcal/mol. These increments depend on the identity of the mismatch, adjacent base pairs, and the position in the helix. UU and AA mismatches are more stable close to a helix end, but GG mismatch stability is essentially unaffected by the position in the helix. Approximations are suggested for predicting stabilities of single mismatches in short RNA duplexes.  相似文献   

13.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

14.
L He  R Kierzek  J SantaLucia  A E Walter  D H Turner 《Biochemistry》1991,30(46):11124-11132
Thermodynamic parameters derived from optical melting studies are reported for duplex formation by a series of oligoribonucleotides containing G.U mismatches. The results are used to determine nearest-neighbor parameters for helix propagation by G.U mismatches. Surprisingly, the [formula; see text] nearest-neighbor free energy increment in unfavorable in the contexts [formula; see text], and [formula; see text] but favorable in the context [formula; see text]. This is a non-nearest-neighbor effect. In contrast, the [formula; see text] free energy increment is favorable and independent of context. Circular dichroism and imino proton NMR spectra of several sequences do not reveal an obvious structural basis for this dichotomy. For example, all the G.U mismatches have two slowly exchanging imino protons. The imino resonances for the G.U mismatches in GGAGUUCC, GUCGUGAC, and CCUGUAGG, however, broaden at lower temperature than the imino resonances for the interior Watson-Crick base pairs. In contrast, the imino resonances for the G.U mismatches in GGAUGUCC remain sharp at high temperature. The improved parameters for G.U mismatches should improve predictions of RNA structure from sequence.  相似文献   

15.
Disney MD  Turner DH 《Biochemistry》2002,41(25):8113-8119
A G.A pair at position -5 in the P1 helix of the Candida albicans ribozyme contributes to tertiary binding of the 5' exon substrate [Disney, M. D., Haidaris, C. G., and Turner, D. H. (2001) Biochemistry 40, 6507-6519]. Here, the G in the G.A pair is replaced with inosine (I) in both semisynthetic ribozymes and oligonucleotide mimics of the internal guide sequence. Comparisons of oligonucleotide binding affinity for these and other sequences indicate that the G.A pair is in an imino conformation where the exocyclic amine of G contributes approximately 1.4 kcal/mol to tertiary interactions that help dock the ribozyme's P1 helix. Furthermore, replacement of the G.A pair with a G-C pair produces less favorable interactions with the 2'-hydroxyl group at the -3 position and a less favorable K(M) for pG in a ribozyme-catalyzed transesterification reaction. These results are also consistent with the G.A pair promoting docking of the P1 helix into the catalytic core. Evidently, tertiary interactions with the exocyclic amino group of a G in a single G.A pair can increase the equilibrium constant for tertiary folding of RNA by roughly 10-fold at 37 degrees C. Results with a G.U or G.G pair replacing the G.A pair at the -5 position suggest similar tertiary interactions with these pairs.  相似文献   

16.
Wright DJ  Rice JL  Yanker DM  Znosko BM 《Biochemistry》2007,46(15):4625-4634
An enzyme family known as adenosine deaminases that act on RNA (ADARs) catalyzes adenosine deamination in RNA. ADARs act on RNA that is largely double-stranded and convert adenosine to inosine, resulting, in many cases, in an I x U pair. Thermodynamic parameters derived from optical melting studies are reported for a series of 14 oligoribonucleotides containing single I x U pairs adjacent to Watson-Crick pairs. In order to determine unique linearly independent nearest neighbor parameters for I x U pairs, four duplexes containing 3'-terminal I x U pairs and four duplexes containing 5'-terminal I x U pairs have also been thermodynamically characterized. This data was combined with previously published data of seven duplexes containing internal, terminal, or tandem I x U pairs from Strobel et al. [Strobel, S. A., Cech, T. R., Usman, N., and Beigelman, L. (1994) Biochemistry 33, 13824-13838] and Serra et al. [Serra, M. J., Smolter, P. E., and Westhof, E. (2004) Nucleic Acids Res. 32, 1824-1828]. On average, a duplex with an internal I x U pair is 2.3 kcal/mol less stable than the same duplex with an A-U pair, however, a duplex with a terminal I x U pair is 0.8 kcal/mol more stable than the same duplex with an A-U pair. Although isosteric with a G-U pair, on average, a duplex with an internal I x U pair is 1.9 kcal/mol less stable than the same duplex with a G-U pair, however, a duplex with a terminal I x U pair is 0.9 kcal/mol more stable than the same duplex with a G-U pair. Duplexes with tandem I x U pairs are on average 5.9 and 3.8 kcal/mol less stable than the same duplex with tandem A-U or tandem G-U pairs, respectively. Using the combined thermodynamic data and a complete linear least-squares fitting routine, nearest neighbor parameters for all nearest neighbor combinations of I x U pairs and an additional parameter for terminal I x U pairs have been derived.  相似文献   

17.
The role of stacking in terminal base-pair formation was studied by comparison of the stability increments for dangling ends to those for fully formed base pairs. Thermodynamic parameters were measured spectrophotometrically for helix formation of the hexanucleotides AGGCCUp, UGGCCAp, CGGCCGp, GCCGGCp, and UCCGGAp and for the corresponding pentanucleotides containing a 5'-dangling end on the GGCCp or CCGGp core helix. In 1 M NaCl at 1 X 10(-4) M strands, a 5'-dangling nucleotide in this series increases the duplex melting temperature (Tm) only 0-4 degrees C, about the same as adding a 5'-phosphate. In contrast, a 3'-dangling nucleotide increases the Tm at 1 X 10(-4) M strands 7-23 degrees C, depending on the sequence [Freier, S. M., Burger, B. J., Alkema, D., Neilson, T., & Turner, D. H. (1983) Biochemistry 22, 6198-6206]. These results are consistent with stacking patterns observed in A-form RNA. The stability increments from terminal A.U, C.G, or U.A base pairs on GGCC or a terminal U.A pair on CCGG are nearly equal to the sums of the stability increments from the corresponding dangling ends. This suggests stacking plays a large role in nucleic acid stability. The stability increment from the terminal base pairs in GCCGGCp, however, is about 5 times the sum of the corresponding dangling ends, suggesting hydrogen bonding can also make important contributions.  相似文献   

18.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

19.
Davis AR  Znosko BM 《Biochemistry》2008,47(38):10178-10187
Due to their prevalence and roles in biological systems, single mismatches adjacent to G-U pairs are important RNA structural elements. Since there are only limited experimental values for the stability of single mismatches adjacent to G-U pairs, current algorithms using free energy minimization to predict RNA secondary structure from sequence assign predicted thermodynamic values to these types of single mismatches. Here, thermodynamic data are reported for frequently occurring single mismatches adjacent to at least one G-U pair. This experimental data can be used in place of predicted thermodynamic values in algorithms that predict secondary structure from sequence using free energy minimization. When predicting the thermodynamic contributions of previously unmeasured single mismatches, most algorithms apply the same thermodynamic penalty for an A-U pair adjacent to a single mismatch and a G-U pair adjacent to a single mismatch. A recent study, however, suggests that the penalty for a G-U pair adjacent to a tandem mismatch should be 1.2 +/- 0.1 kcal/mol, and the penalty for an A-U pair adjacent to a tandem mismatch should be 0.5 +/- 0.2 kcal/mol [Christiansen, M. E. and Znosko, B. M. (2008) Biochemistry 47, 4329-4336]. Therefore, the data reported here are combined with the existing thermodynamic dataset of single mismatches, and nearest neighbor parameters are derived for an A-U pair adjacent to a single mismatch (1.1 +/- 0.1 kcal/mol) and a G-U pair adjacent to a single mismatch (1.4 +/- 0.1 kcal/mol).  相似文献   

20.
Thermodynamic parameters are presented for 12 different RNA duplexes containing A.A, A.G, G.A and G.G mismatches flanked by C-G base pairs. UV melting studies were conducted under three different buffer conditions in order to evaluate the effects of salt concentration and pH on the stability of each mismatch-containing duplex. The main findings are: (i) the mismatches have a wide range of effects on duplex stability, decreasing delta G degrees 37 of denaturation by approximately 0-7 kcal/mol; (ii) the nearest-neighbor assumption commonly used to calculate helix stability breaks down for G.A mismatches; and (iii) G.A mismatches separated by 2 bp form a protonated structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号