首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The process of keratinocyte differentiation was analyzed in the regenerating epidermis of the lizard Anolis carolinensis, where the genes coding for beta‐proteins (beta‐keratins) are known. The regenerating epidermis forms all epidermal layers found in normal scales (Oberhäutchen‐, beta‐, mesos‐, and alpha‐layer). Three specific proteins representing the larger families of beta‐proteins, glycine‐rich (HgG5, 28% glycine, 3.6% cysteine), glycine‐cysteine medium‐rich (HgGC10, 13% glycine, 14.5% cysteine), and glycine‐cysteine rich (HgGC3, 30.4% glycine, 8.7% cysteine) have been immunolocalized at the ultrastructural level. HgG5 is only present in differentiating beta‐cells, a weak or no labeling is observed in Oberhäutchen and is absent in alpha‐cells. The protein is located in the pale corneous material forming the compact beta‐layer but is absent in mature Oberhäutchen cells. HgGC10 is present among beta‐packets in Oberhäutchen and beta‐cells but disappears in more compact and electron‐pale corneous material. The labeling disappears in mesos‐cells and is present with variable intensity in alpha‐cells, whereas lacunar and clear‐cells are low labeled to unlabeled. HgGC3 is sparse or absent in beta‐cells but is lightly present in the darker corneous material of differentiating and mature alpha‐cells, lacunar‐cells, and clear‐cells. The study suggests that while glycine‐rich proteins (electron‐pale) are specifically used for building the resistant and hydrophobic beta‐layer, cysteine–glycine rich proteins (electron‐denser) are used to form the pliable corneous material present in the Oberhäutchen and alpha‐cells. The differential accumulation of beta‐proteins on the alpha‐keratin cytoskeleton scaffold and not the alternance of beta‐ with alpha‐keratins allow the differentiation of different epidermal layers. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
Immunolabelling for RhoV and actin in early regenerating tail of the lizard Podarcis muralis suggests involvement in epithelial and mesenchymal cell motility. Acta Zoologica, Stockolm. Immunolabelling for RhoV and α‐smooth muscle actin, genes that are highly expressed in the regenerating tail of lizards, shows that a main protein band immunolabelled for RhoV is seen at 65–70 kDa and only a weak band at 22–24 kDa. This suggests that alteration occurred during extraction or is due to biochemical processing of the protein. RhoV immunolabelled cells are present in apical and proximal regenerating epidermis during scale neogenesis. The apical ependyma is labelled but labelling fades and disappears in medial‐proximal regions, near the original spinal cord. Differentiating muscles and cartilage show low labelling. Ultrastructural immunolocalization of RhoV in wound keratinocytes shows labelling in regions containing actin filaments that associate with tonofilaments and desmosomes while a low labelling is present in mesenchymal cells. Filamentous regions of the nucleus, nuclear membrane and the nucleolus are immune‐labelled for RhoV. Similar localization is seen for actin that is present along the perimeters of keratinocytes associated with tonofilaments, in elongations of mesenchymal cells, in muscle satellite cells, endothelial and pericytes of blood vessels. It is suggested that RhoV and actin are associated in the dynamic cytoskeleton needed for the movements of epidermal and mesenchymal cells and in endothelial cells forming new blood vessels.  相似文献   

5.
After tail amputation in lizard, a regenerative response is elicited leading to the formation of a new tail. The stimulation of the proliferation process may involve the proto‐oncogene c‐myc. The immunocytochemical analysis detects the c‐myc protein few days after wound in free cells accumulating over the injured tissues of the tail stump. Western blot detects a protein band at 68–70 kDa that is more intense in the regenerating blastema than in normal tail tissues. Nuclei positive for the c‐myc protein are seen in mesenchymal‐like cells located among muscles, connectives and fat tissues of the tail stump 4 days postamputation. Proliferating cells labelled for 5BrdU are seen at 4 days postamputation and are sparse in the mesenchyme of the regenerating blastema formed at 12 days postamputation. Fine immunolocalization of the c‐myc protein shows it is mainly located over euchromatin or poorly condensed chromatin to indicate gene activation. The study correlates the detection of the c‐myc protein with activation of cell division in the injured tissues leading to the formation of the regenerative blastema. The lizard c‐myc protein probably activates a controlled proliferation process through a mechanism that can give information on the uncontrolled process occurring in cancer.  相似文献   

6.
7.
The immunolocalization of the muscle segmental homoeobox protein Msx1‐2 of 27–34 kDa in the regenerating tail blastema of a lizard shows prevalent localization in the apical ependyma of the regenerating spinal cord and less intense labelling in the wound epidermis, in the apical epidermal peg (AEP), and in the regenerating segmental muscles. The AEP is a micro‐region of the regenerating epidermis located at the tail tip of the blastema, likely corresponding to the AEC of the amphibian blastema. No immunolabelling is present in the wound epidermis and scarring blastema of the limb at 18–21 days of regeneration, except for sparse repairing muscles. The presence of a proximal–distal gradient of Msx1‐2 protein, generated from the apical ependyma, is suggested by the intensity of immunolabelling. The AEP and the ependyma are believed to induce and maintain tail regeneration, and this study suggests that Msx1‐2 proteins are components of the signalling system that maintains active growth of the tail blastema. The lack of activation and production of Msx1‐2 protein in the limb are likely due to the intense inflammatory reaction following amputation. This study confirms that, like during regeneration in fishes and amphibians, also the blastema of lizards utilizes common signalling pathways for maintaining regeneration.  相似文献   

8.
The present immunohistochemical and western blotting study evaluates the localization of a proto-cadherin which gene is overexpressed in the regenerating blastema of the lizard Podarcis muralis. Bioinformatic analysis suggests that the antibody recognizes FAT1/2 proteins. Western blot indicates a main band around 50 kDa, a likely fragment derived from the original membrane-bound large protein. Immunofluorescence shows main labelling in differentiating wound keratinocytes, lower in ependyma, mesenchyme and extracellular matrix of the blastema. The apical epidermal peg contains keratinocytes with labelled peripheral cytoplasm, as confirmed using ultrastructural immunogold that also reveals most labelling located along the cell surface of mesenchymal cells. Myoblasts and differentiating myotubes of regenerating muscles are less intensely labelled. The regenerating cartilaginous tube contains sparse labelled chondroblasts, especially in external and internal perichondria. In regenerating scales, differentiating beta-cells appear immunofluorescent mainly along the cell perimeter. In more differentiated muscle, cartilage and connective tissues of the new tail, the labelling lowers or disappears. The observations indicate that FAT1/2 proto-cadherins are present in the apical blastema where an intense remodelling takes place for the growth of the new tail but where also a tight control of cell division and migration is active and may regulate potential tumorigenic process.  相似文献   

9.
《Journal of morphology》2017,278(1):119-130
During tail regeneration in lizards, the stratified regenerating epidermis progressively gives rise to neogenic scales that form a new epidermal generation. Initially, a soft, un‐scaled, pliable, and extensible epidermis is formed that is progressively replaced by a resistant but non‐extensible scaled epidermis. This suggests that the initial corneous proteins are later replaced with harder corneous proteins. Using PCR and immunocytochemistry, the present study shows an upregulation in the synthesis of low‐cysteine type I and II alpha‐keratins and of corneous beta‐proteins with a medium cysteine content and a low content in glycine (formerly termed beta‐keratins) produced at the beginning of epidermal regeneration. Quantitative PCR indicates upregulation in the production of alpha‐keratin mRNAs, particularly of type I, between normal and the thicker regenerating epidermis. PCR‐data also indicate a higher upregulation for cysteine‐rich corneous beta‐proteins and a high but less intense upregulation of low glycine corneous protein mRNAs at the beginning of scale regeneration. Immunolabeling confirms the localization of these proteins, and in particular of beta‐proteins with a medium content in cysteine initially formed in the wound epidermis and later in the differentiating corneous layers of regenerating scales. It is concluded that the wound epidermis initially contains alpha‐keratins and corneous beta‐proteins with a lower cysteine content than more specialized beta‐proteins later formed in the mature scales. These initial corneous proteins are likely related to the pliability of the wound epidermis while more specialized alpha‐keratins and beta‐proteins richer in glycine and cysteine are synthesized later in the mature and inflexible scales. J. Morphol. 278:119–130, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

10.
The localization of specific keratin‐associated beta‐proteins (formerly referred to as beta‐keratins) in the embryonic epidermis of lizards is not known. Two specific keratin‐associated beta‐proteins of the epidermis, one representing the glycine‐rich subfamily (HgG5) and the other the glycine‐cysteine medium‐rich subfamily (HgGC10), have been immunolocalized at the ultrastructural level in the lizard Anolis lineatopus. The periderm and granulated subperiderm are most immunonegative for these proteins. HgG5 is low to absent in theOberhäutchen layer while is present in the forming beta‐layer, and disappears in mesos‐ and alpha‐layers. Instead, HgGC10 is present in the Oberhäutchen, beta‐, and also in the following alpha‐layers, and specifically accumulates in the developing adhesive setae but not in the surrounding cells of the clear layer. Therefore, setae and their terminal spatulae that adhere to surfaces allowing these lizards to walk vertically contain cysteine–glycine rich proteins. The study suggests that, like in adult and regenerating epidermis, the HgGC10 protein is not only accumulated in cells of the beta‐layer but also in those forming the alpha‐layer. This small protein therefore is implicated in resistance, flexibility, and stretching of the epidermal layers. It is also hypothesized that the charges of these proteins may influence adhesion of the setae of pad lamellae. Conversely, glycine‐rich beta‐proteins like HgG5 give rise to the dense, hydrophobic, and chromophobic corneous material of the resistant beta‐layer. This result suggests that the differential accumulation of keratin‐associated beta‐proteins over the alpha‐keratin network determines differences in properties of the stratified layers of the epidermis of lizards. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
In the lizard epidermis, the formation of a stratified alpha‐ and beta‐layer, separated by a shedding complex for molting, suggests that keratinocytes communicate in a coordinated manner after they leave the basal layers during the shedding cycle. I have therefore studied the localization of cell junctional proteins such as beta‐catenin and connexins 43 and 26 during scale regeneration in lizard using immunocytochemistry. Beta‐catenin is also detected in nuclei of basal cells destined to give rise to the Oberhäutchen and beta‐cells suggesting activation of the Wnt‐pathway during beta‐cell differentiation. The observations show that cells of the entire shedding layer (clear and Oberhäutchen) and beta‐layer are connected by beta‐catenin (adherens junctions) and connexins (communicating junctions) during their differentiation. This likely cell coupling determines the formation of a distinct shedding and beta‐layer within the regenerating epidermis. The observed pattern of cell junctional stratification suggests that after departing from the basal layer Oberhäutchen and beta‐cells form a continuous communicating compartment that coordinates the contemporaneous differentiation along the entire scale. While the beta‐layer matures the junctions are lost while other cell junctions are formed in the following mesos‐ and alpha‐cell layers. This process determines the formation of layers with different texture (harder or softer) and the precise localization of the shedding layer within lizard epidermis. J. Morphol. 275:693–702, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
13.
目的:检测蛋白增殖细胞核抗原(PCNA)、p63和p53在肺癌组织中的表达情况,以探讨三者在肺癌的发生、发展中的生物学作用和临床意义。方法:选取195例肺癌组织(其中57例有癌旁组织),应用组织芯片技术和免疫组织化学方法观察三种蛋白的表达情况,并研究三者之间及其与临床病理参数的关系。结果:PCNA、p63和p53蛋白在肺癌组织中的阳性表达率分别为96.41%、38.46%及58.46%,但三者在癌旁组织中均无表达,差异有统计学意义(均P0.05);在肺癌组织中,PCNA、p63和p53蛋白的表达情况均与组织分型有关(P0.05),且PCNA、p53蛋白表达与分化程度有关(P0.05),分化越差,表达越高;p53表达与PCNA表达呈正相关(r=0.352,P=0.043),p63与p53、PCNA的表达不相关(P0.05)。结论:肺癌组织中PCNA、p63和p53蛋白的表达升高,三者均在肺癌的发生、发展中发挥着重要作用,并且临床可通过检测三者的蛋白水平,作为鉴别肺鳞状细胞癌与其他类型癌的重要参考指标,为病理诊断提供依据。  相似文献   

14.
Wild‐type p53 functions as a tumour suppressor while mutant p53 possesses oncogenic potential. Until now it remains unclear how a single mutation can transform p53 into a functionally distinct gene harbouring a new set of original cellular roles. Here we show that the most common p53 cancer mutants express a larger number and higher levels of shorter p53 protein isoforms that are translated from the mutated full‐length p53 mRNA. Cells expressing mutant p53 exhibit “gain‐of‐function” cancer phenotypes, such as enhanced cell survival, proliferation, invasion and adhesion, altered mammary tissue architecture and invasive cell structures. Interestingly, Δ160p53‐overexpressing cells behave in a similar manner. In contrast, an exogenous or endogenous mutant p53 that fails to express Δ160p53 due to specific mutations or antisense knock‐down loses pro‐oncogenic potential. Our data support a model in which “gain‐of‐function” phenotypes induced by p53 mutations depend on the shorter p53 isoforms. As a conserved wild‐type isoform, Δ160p53 has evolved during millions of years. We thus provide a rational explanation for the origin of the tumour‐promoting functions of p53 mutations.  相似文献   

15.
After tail and limb amputation in lizard, injection of 5BrdU for 6 days produces immunolabelled cells in most tissues of tail and limb stumps. After further 8 and 16 days, and 14 and 22 days of regeneration, numerous 5BrdU-labelled cells are detected in regenerating tail and limb, derived from most stump tissues. In tail blastema cone at 14 days, sparse-labelled cells remain in proximal dermis, muscles, cartilaginous tube and external layers of wound epidermis but are numerous in the blastema. In apical regions at 22 days of regeneration, labelled mesenchymal cells are sparse, while the apical wound epidermis contains numerous labelled cells in suprabasal and external layers, indicating cell accumulation from more proximal epidermis. Cell proliferation dilutes the label, and keratinocytes take 8 days to migrate into corneous layers. In healing limbs, labelled cells remain sparse from 14 to 22 days of regeneration in wound epidermis and repairing tissues and little labelling dilution occurs indicating low cell proliferation for local tissue repair but not distal growth. Labelled cells are present in epidermis, intermuscle and peri-nerve connectives, bone periosteum, cartilaginous callus and sparse fibroblasts, leading to the formation of a scarring outgrowth. Resident stem cells and dedifferentiation occur when stump tissues are damaged.  相似文献   

16.
Using an antibody against a lizard telomerase‐1 component the presence of telomerase has been detected in regenerating lizard tails where numerous cells are proliferating. Immunoblots showed telomerase positive bands at 75–80 kDa in normal tissues and at 50, 75, and 90 kDa in those regenerating. Immunofluorescence and ultrastructural immunolocalization showed telomerase‐immunoreactivity in sparCe (few/diluted) mesenchymal cells of the blastema, early regenerating muscles, perichondrium of the cartilaginous tube, ependyma of the spinal cord, and in the regenerating epidermis. Clusters of gold particles were detected in condensing chromosomes of few mesenchymal and epithelial cells in the regenerating tail, but a low to undetectable labeling in interphase cells. Telomerase‐immunoreactivity was intense in the nucleus and sparCe (few/diluted) in the cytoplasm of spermatogonia and spermatocytes and drastically decreased in early spermatids where some nuclear labeling remains. Some intense immunoreactivity was seen in few cells near the basal membrane of intestinal enterocytes or in leukocytes (likely lymphocytes) of the intestine mucosa. In spermatogonia, spermatids and in enterocytes part of the nuclear labeling formed cluster of gold particles in dense areas identified as Cajal Bodies, suggesting that telomerase is a marker for these stem cells. This therefore suggests that also the sparCe (few/diluted) telomerase positive cells detected in the regenerating tail may represent sparCe (few/diluted) stem cells localized in regenerating tissues where transit amplifying cells are instead preponderant to allow for tail growth. This observation supports previous studies indicating that few stem cells are present in the stump after tail amputation and give rise to transit amplifying cells for tail regeneration. J. Morphol. 276:748–758, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Lizard epidermis is made of beta‐ and alpha‐layers. Using Western blot tested antibodies, the ultrastructural immunolocalization of specific keratin‐associated beta‐proteins in the epidermis of different lizard species reveals that glycine‐rich beta‐proteins (HgG5) localize in the beta‐layer, while glycine–cysteine‐medium‐rich beta‐proteins (HgGC10) are present in oberhautchen and alpha‐layers. This suggests a new explanation for the formation of different epidermal layers during the shedding cycle in lepidosaurian epidermis instead of an alternance between beta‐keratins and alpha‐keratins. It is proposed that different sets of genes coding for specific beta‐proteins are activated in keratinocytes during the renewal phase of the shedding cycle. Initially, glycine–cysteine‐medium‐rich beta‐proteins with hydrophilic and elastic properties accumulate over alpha‐keratins in the oberhautchen but are replaced in the next cell layer with glycine‐rich hydrophobic beta‐proteins forming a resistant, stiff, and hydrophobic beta‐layer. The synthesis of glycine‐rich proteins terminates in mesos and alpha‐cells where these proteins are replaced with glycine–cysteine‐rich beta‐proteins. The pattern of beta‐protein deposition onto a scaffold of intermediate filament keratins is typical for keratin‐associated proteins and the association between alpha‐keratins and specific keratin‐associated beta‐proteins during the renewal phase of the shedding cycle gives rise to epidermal layers possessing different structural, mechanical, and texture properties.  相似文献   

18.
Cellular senescence, which is known to halt proliferation of aged and stressed cells, plays a key role against cancer development and is also closely associated with organismal aging. While increased insulin‐like growth factor (IGF) signaling induces cell proliferation, survival and cancer progression, disrupted IGF signaling is known to enhance longevity concomitantly with delay in aging processes. The molecular mechanisms involved in the regulation of aging by IGF signaling and whether IGF regulates cellular senescence are still poorly understood. In this study, we demonstrate that IGF‐1 exerts a dual function in promoting cell proliferation as well as cellular senescence. While acute IGF‐1 exposure promotes cell proliferation and is opposed by p53, prolonged IGF‐1 treatment induces premature cellular senescence in a p53‐dependent manner. We show that prolonged IGF‐1 treatment inhibits SIRT1 deacetylase activity, resulting in increased p53 acetylation as well as p53 stabilization and activation, thus leading to premature cellular senescence. In addition, either expression of SIRT1 or inhibition of p53 prevented IGF‐1‐induced premature cellular senescence. Together, these findings suggest that p53 acts as a molecular switch in monitoring IGF‐1‐induced proliferation and premature senescence, and suggest a possible molecular connection involving IGF‐1‐SIRT1‐p53 signaling in cellular senescence and aging.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号