首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary After sectioning the postganglionic adrenergic sympathetic nerve trunk for the submandibular gland, as close to the submandibular artery as practicable, its central end was sutured to the peripheral end of the preganglionic cholinergic parasympathetic nerve trunk for the gland, the chorda, which had been sectioned where it left the lingual nerve. The effects of this heterologous cross-sature were studied at different times, up to 1 year afterwards, by assessing the physiological and pharmacological responses of the glands and the neuro-histochemical changes in the nerve trunks and in the nerves within the glands.In all cases adrenergic sympathetic nerves grew across the site of suture and down the erstwhile cholinergic parasympathetic trunk, eventually to develop connections in the gland. In some cases the functional adrenergic reinnervation of the submandibular gland appeared to result exclusively or predominantly from the direct downgrowth of adrenergic axons to the gland, via the crossed nerves. In other cases however, in addition to a direct glandular reinnervation, there was some physiological and morphological evidence which suggested that possible heterogenous synaptic contacts may have been created between postganglionic sympathetic axons and cholinergic ganglion cells in the chorda nerve.This work was supported by a grant from the Joint Research Committee, King's College Hospital.  相似文献   

2.
The intraglandular distribution of adrenergic and cholinergic nerve fibers was studied histochemically in the parotid, mandibular, and sublingual glands of six species of edentates belonging to the three families that comprise the order; namely, the Dasypodidae (armadillos), the Myrmecophagidae (anteaters), and the Bradipodidae (sloths). The following histochemical techniques were used: (a) acetylcholinesterase reaction for the demonstration of cholinergic fibers; (b) formaldehyde- and glyoxylic acid-induced fluorescence for the demonstration of adrenergic fibers. In addition, norepinephrine (NE) was assayed fluorimetrically in the mandibular and parotid glands of the armadillo. A network of acetylcholinesterase-positive nerve fibers surrounds the intra- and interlobular ducts and endpieces of all glands; it is of low density in the mandibular and sublingual gland of the sloth, of high density in the sublingual gland of the anteater and of moderate density in the remaining glands. A vascular cholinergic innervation occurs in all salivary glands. Although present around the vessels, adrenergic new fibers were virtually absent from the parenchyma of all glands, even after in vitro incubation of glandular tissue with NE, or after administration of NE to armadillos previously treated with a monoamine oxidase (MAO) inhibitor. Consistent with this fact, the amount of NE present in the parotid and mandibular gland of the armadillo was extremely low. These findings may indicate that the salivary secretion in the edentates is regulated by the parasympathetic rather than by the sympathetic nervous system.  相似文献   

3.
Summary Various tissues from mice treated with a nerve-growth factor (NGF) were studied with the histochemical technique ofFalck andHillarp, which visualizes the adrenergic transmitter in the sympathetic postganglionic neurons. Growth stimulation was detectable in all parts of the sympathetic adrenergic neurons. An increased density of the adrenergic ground plexus was observed in e.g. the iris, submaxillary and parotid glands, blood vessels and intramural ganglionic plexuses of the intestinal tract. Normally non-innervated tissues were also found to contain a considerable number of adrenergic terminals. Of special interest is the striking increase in number of adrenergic terminals in various types of autonomic ganglia, in all probability with an inhibitory effect on ganglionic transmission.This investigation was supported by research grants from the Swedish Medical Research Council (B67-12x-714-02), Magnus Bergwalls stiftelse and Stiftelsen Therese och Johan Anderssons Minne. The skillful technical assistance of MissBarbro Riese is gratefully acknowledged.  相似文献   

4.
The effects of i.v. 6-hydroxydopamine (6-OHDA), 100 mg/kg, have been studied on parotid glands of rats at 12, 24, 48, 72 hr and 3 weeks after avulsion of the right superior cervical sympathetic ganglion. The salivary flow from normal left control glands and from right glands 12 hr after ganglionectomy were similar, but at longer times after ganglionectomy the secretory response from the test glands was greatly reduced. Morphological assessment showed that 6-OHDA induced a massive depletion of secretory granules from all control glands and also at 12 hr after ganglionectomy but at 48 and 72 hr there was considerably less depletion of granules on the ganglionectomized side. It is thought that at the longer times after ganglionectomy the secretion from the test glands is caused by circulating catecholamines released by the action of 6-OHDS on adrenergic nerves elsewhere, plus a possible small direct secretogogue effect oomy are thought to be attributable to the release of catecholamines from adrenergic nerves within the gland.  相似文献   

5.
Previous studies suggest that the sympathetic innervation of the sweat glands in the rat is initially noradrenergic and during development undergoes a transition in neurotransmitter phenotype to become cholinergic. To characterize this system and its development further, we have examined the adrenergic and cholinergic components of the secretory response in adult and immature rats and have studied the onset of sweating in the plantar sweat glands of developing rats. Stimulation of the sciatic nerve in adult rats elicited a secretory response which was completely blocked by the cholinergic antagonist, atropine, and was unaffected by adrenergic antagonists, indicating that nerve-evoked secretion was cholinergic. In adult rats, the sweat glands were quite sensitive to cholinergic agonists. In addition to acetylcholine, the mature sweat gland innervation contains vasoactive intestinal peptide (VIP). In some rats, the injection of VIP alone elicited a secretory response which was blocked by atropine, suggesting that the response to VIP was mediated cholinergically. In contrast to cholinergic agonists, the glands responded relatively infrequently and with reduced volumes of sweat to the alpha- and beta-adrenergic agonists 6-fluoronorepinephrine and isoproterenol. However, when VIP, which is a potent vasodilator, was simultaneously injected with adrenergic agonists, glands in many of the injected footpads exhibited a secretory response. The response to adrenergic agonists in combination with VIP was reduced by atropine and by phentolamine plus propranolol, but was blocked completely only by a combination of the three antagonists, indicating that both adrenergic and cholinergic mechanisms were involved. In immature rats, sweating evoked by nerve stimulation first appeared at 14 days of age in 25% of the rats tested. Both the percentage of rats sweating and the number of active glands increased rapidly. At 16 days, 50% of the rats tested exhibited some active glands, and by 21 days all rats tested exhibited a secretory response. In 16-day-old rats, nerve-evoked sweating was almost completely inhibited by local injection of 1 microM atropine, but was unaffected by phentolamine and propranolol in concentrations up to 10 microM. Similarly, the glands were sensitive to 10 microM muscarine, but they exhibited no secretory response to the alpha-adrenergic agonists, clonidine and 6-fluoronorepinephrine, nor to the beta-adrenergic agonist, isoproterenol, at concentrations up to 50 microM. The simultaneous injection of VIP with adrenergic agonists did not reveal an adrenergically mediated secretory response in 16-day-old animals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Summary The present study investigated the distribution of neuropeptide Y-immunoreactive fibers to the penis of the rat. In the corpora cavernosa penis, a dense plexus of fibers was asociated with arteries, intrinsic cavernosal muscle, and veins including the deep dorsal vein. In the corpus spongiosum, immunoreactive fibers were present around vascular smooth muscle and at the periphery of the acini of the paraurethral glands. Immunohistochemistry of penile neurons identified by retrograde tracer injection into the penis indicates that about 5% of the penile neurons in the pelvic plexus contained the neuropeptide while larger percentages of penile neurons in the sympathetic chains were immunoreactive for neuropeptide Y. Chemical and surgical sympathectomy greatly reduced the neuropeptide Y- and catecholamine-containing fibers in the erectile tissue but had no clear effect on the neuropeptide Y fibers around the paraurethral glands; a tissue that is not innervated by adrenergic fibers. It is concluded that (1) the widespread distribution of neuropeptide Y indicates that it may function in the control of penile blood flow, (2) with the possible exception of the paraurethral glands, the sympathetic chain is the most likely source of neuropeptide Y fibers in both erectile bodies of the penis, and (3) this peptide may play a role in the secretory functions of the paraurethral glands.  相似文献   

7.
Parotid glands of rat have been examined 12, 24 and 48 hours after avulsion of the cervical sympathetic ganglion and compared with normally innervated left glands. Formaldehyde-induced fluorescence showed a relatively normal complement of adrenergic nerves at 12 hours but most of the nerves had lost their noradrenaline content by 24 hours and no fluorescent nerves were detected at 48 hours. Ultrastructural degenerative changes in axons were rare at 12 hours, common at 24 hours, and the degenerating axons appeared to have disappeared by 48 hours. The glands looked whitish and pale and similar to the controls at 12 and 48 hours but were pinkish and oedematous on the sympathectomised side at 24 hours. Correspondingly the acini were loaded with secretory granules at 12 and 48 hours but were extensively depleted of granules at 24 hours. This loss of granules is considered to be due to sympathetic "degeneration secretion" caused by the release of noradrenaline from the degenerating adrenergic nerves between 12 and 24 hours after ganglionectomy. This is thought to be the first example of morphological change resulting from "degeneration activation" to be recorded microscopically.  相似文献   

8.
Summary The adrenergic innervation of the major salivary glands in the rat has been studied by a specific histochemical method for the visualization of the adrenergic transmitter. Adrenergic varicose nerve fibres were found, located in a typical adrenergic ground plexus closely surrounding the serous acini of the submaxillary and parotid glands, but not the acini of the mainly mucous sublingual gland. The ducts were found to be completely devoid of adrenergic innervation. Arterioles and venules in the stroma of all three glands and certain very small vessels, possibly the sphincters of arterio-venous anastomoses, were also richly innervated by adrenergic vasomotor fibres. The relationship of the adrenergic nerve fibres to the different functional units of the gland parenchyma is discussed.The investigation has been supported by a research grant (B 66–257) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB 05236-01) from the National Institute of Neurological Diseases and Blindness.  相似文献   

9.
Confocal imaging uses immunohistochemical binding of specific antibodies to visualize tissues, but technical obstacles limit more widespread use of this technique in the imaging of peripheral nerve tissue. These obstacles include same-species antibody cross-reactivity and weak fluorescent signals of individual and co-localized antigens. The aims of this study were to develop new immunohistochemical techniques for imaging of peripheral nerve fibers. Three-millimeter punch skin biopsies of healthy individuals were fixed, frozen, and cut into 50-µm sections. Tissues were stained with a variety of antibody combinations with two signal amplification systems, streptavidin-biotin-fluorochrome (sABC) and tyramide-horseradish peroxidase-fluorochrome (TSA), used simultaneously to augment immunohistochemical signals. The combination of the TSA and sABC amplification systems provided the first successful co-localization of sympathetic adrenergic and sympathetic cholinergic nerve fibers in cutaneous human sweat glands and vasomotor and pilomotor systems. Primary antibodies from the same species were amplified individually without cross-reactivity or elevated background interference. The confocal fluorescent signal-to-noise ratio increased, and image clarity improved. These modifications to signal amplification systems have the potential for widespread use in the study of human neural tissues.  相似文献   

10.
Synopsis The cholinergic and adrenergic innervation of human minor sublingual buccal and labial salivary glands has been studied with histochemical techniques for localizing acetylcholinesterase and catecholamines. A rich cholinergic innervation was observed around the acini, blood vessels and some ducts of the three glands.The adrenrgic innervation, however, was virtually absent from the parenchyma although present around the blood vessels, in marked contrast to the dense parenchymal adrenergic innervation observed in the human parotid and submandibular glands. These results suggest that the autonomic nervous mechanism which regulates salivary secretion is more elaborate in the major than in the minor salivary glands.  相似文献   

11.
P Voisin  J P Collin 《Life sciences》1986,39(21):2025-2032
The present investigation sought to characterize the adrenergic inhibition of arylalkylamine-N-acetyltransferase in cultured chicken pineal glands. Arylalkylamine-N-acetyltransferase, the melatonin rhythm generating enzyme, displays daily oscillations of activity that are driven by a circadian oscillator. Norepinephrine released at sympathetic nerve endings inhibits the enzyme and appears to play a role in maintaining a circadian rhythm of melatonin release. Chicken pineal glands were isolated in organ culture and the effects of adrenergic agents on the night time peak of N-acetyltransferase activity were studied. Norepinephrine and clonidine prevented 50 to 65% of the nocturnal rise of N-acetyltransferase activity. When applied at middark, norepinephrine and clonidine caused a 50 to 65% inhibition of N-acetyltransferase activity in 2 hours. Dose-response studies indicated clonidine was 100 times more potent than norepinephrine or cirazoline at inhibiting N-acetyltransferase activity. Inhibition of N-acetyltransferase activity was also observed, at micromolar concentration with epinephrine, UK 14,304 and alpha-methylnorepinephrine but not with phenylephrine, isoproterenol or dopamine. Epinephrine and clonidine actions were antagonized by yohimbine but not by prazosin. Destruction of the presynaptic compartment by bilateral superior cervical ganglionectomy did not affect the clonidine-induced inhibition of N-acetyltransferase and its reversal by yohimbine. It is concluded that the adrenergic inhibition of N-acetyltransferase activity in chicken pineal gland probably occurs via stimulation of postsynaptic alpha 2-adrenergic receptors.  相似文献   

12.
The effects of sympathetic and parasympathetic agonists and antagonists on discharge of secretory product by the granular and mucous glands were examined in the red-spotted newt, Notopthalmus viridescens viridescens. Observations were made also on the South African clawed toad. Xenopus laevis, the grass frog, Rana pipiens, and the crested newt, Triturus cristatus. In contrast to the granular glands of the South African clawed toad and the grass frog, which were stimulated by alpha-adrenergic agents, those of the red-spotted newt discharge in response to acetylcholine, either in vitro when added to the Holtfreter's solution in which explants were incubated, or in vivo when injected subcutaneously. Granular glands of the crested newt were also dischared in response to subcutaneous injection of acetylcholine. Stimulation of the granular glands by acetylcholine was blocked by atopine but not by tubocurarie, indicating that the cholinergic receptors are muscarinic rather than nicotinic. The mucous glands of the red-spotted newt, on the other hand, did not discharge in response to either acetylcholine or to adrenergic agents.  相似文献   

13.
Saliva secretion in response to the stimulation of the superior cervical ganglion (S.C.G.) at different frequencies (2, 3, 5, 10, 15, 20 Hz) has been studied in anaesthetized rabbits. The differences between the two major glands in this species were analyzed, with respect to the flow response, potassium, amylase and total protein content during the sympathetic stimulation. The stimulation of S.C.G. increased the salivary flow rate at all frequencies, on both parotid and mandibular gland. In the parotid gland the flow and stimulation frequency show a positive linear correlation which does not appear in the mandibular gland. In conclusion, the differences observed in the response to sympathetic stimulation in both glands seem to be due to distinct patterns of sympathetic innervation on different glandular elements.  相似文献   

14.
Summary This study evaluates the production of adrenergic nerve fibers by adrenal medullary tissue of the adult rat grafted to the anterior chamber of the eye of adult recipients. The chromaffin grafts attach to and become vascularized by the host iris. They decrease in size intraocularly during the first 3 weeks. This decrease is somewhat counteracted by sympathetic denervation of the host iris, and better counteracted by sympathetic denervation and addition of nerve growth factor (NGF, given at grafting and 1 and 2 weeks after grafting). Outgrowth of adrenergic nerve fibers from the grafts into the host iris was studied in wholemount preparations by use of the Falck-Hillarp technique 3 weeks after grafting. The innervated area of the host iris was approximately doubled in the chronically sympathectomized group and doubled again in the chronically sympathectomized NGF-supplemented group. Chronic sympathetic denervation had no effect on density of outgrowing nerves, whereas addition of NGF more than doubled nerve density. Since sympathetic denervation causes a slight elevation of NGF activity in the iris, the present experiments are taken as evidence that the level of NGF in the iris regulates formation of nerve fibers by adrenal medullary tissue grafts from adult rats.  相似文献   

15.
In eutherian mammals, the male reproductive accessory glands (RAGs) comprise the prostate, bulbourethral glands, ampullary glands, and the seminal vesicles. Their composition, anatomy and function vary widely between species. This study aimed to characterize histologically and compare the RAGs of bats. The RAGs of Noctilio albiventris (Noctilionidae) and Rhynchonycteris naso (Emballonuridae) were studied using anatomical and histological methods, and were reconstructed three dimensionally. The RAGs of N. albiventris and R. naso are composed of a compact glandular complex that surrounds the urethra and a pair of bulbourethral glands, which are extra‐abdominally located in the inguinal region. In both species, the glandular complex is composed of two well‐defined prostatic regions (ventral and dorsal). The ventral region showed an atypical epithelium (holocrine), where no obvious cellular limits were observed, and PAS‐positive secretion. The dorsal region had a pseudostratified cuboidal epithelium, with basal and secretory cells, and PAS‐negative secretion. Noctilio albiventris also had urethral glands (Littre glands) surrounding the urethra, however, R. naso had only muscles. Both species had bulbourethral glands, with simple columnar epithelium and PAS‐positive secretion. In conclusion, the RAGs of N. albiventris and R. naso comprised a pair of bulbourethral glands and an intra‐abdominal complex, composed of a prostate with two different regions (ventral and dorsal), while the ampullary glands and seminal vesicles were missing in both species. This morphology was more closely related between N. albiventris and R. naso, and to species of the family Phyllostomidae than to families Molossidae and Vespertilionidae. J. Morphol. 277:1459–1468, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The present study in dogs indicates that the peripheral sympathetic fibers develop mostly after birth and reach a full maturity at about 2 months of life. The norepinephrine content of the heart, spleen, intestine, salivary glands, and adrenal glands increased from birth to 56 days of age. In contrast, the content of the stellate ganglia decreased during this period. In most of the organs studied, the uptake of [3H] norepinephrine developed in parallel with the norepinephrine content, except in the right atrium and salivary glands where it was fully developed soon after birth. During development, the systemic blood pressure increased from 40 to 100 mm Hg. Bilateral adrenal vessel clamping failed to induce a fall in blood pressure in growing dogs which indicates that the adrenal medulla or the baroreceptors did not fully compensate for the lack of peripheral sympathetic fibers and for the lower blood pressure in newborn animals. Although cardiac norepinephrine content was still very low in 10-day-old animals, cardiovascular responses to direct and reflex sympathetic stimulation were similar to those observed in 56-day-old animals. These results indicate that the sympathetic nervous system becomes functional before the fibers reach their full maturity.  相似文献   

17.
The influence of sodium oxybutyrate on the adrenergic neurotransmitter content in the nerve fibers and the synaptic vesicles and the uptake of exogenous noradrenaline (NA) by the sympathetic nerves of rat Vas deferens was studied by spectrofluorimetry, fluorescent-histochemistry and cytochemical electron microscopy. Sodium oxybutirate failed to influence the stores of the adrenergic mediator, but was capable of blocking the uptake and accumulation of the exogenous NA.  相似文献   

18.
Objective: To investigate the involvement of α1‐adrenoceptors in the sympathetic regulation of glucose uptake in human adipocytes. Research Methods and Procedures: Twenty‐four severely obese subjects participated in this study. The microdialysis technique was used to determine interstitial glucose concentration after stimulation of abdominal subcutaneous adipose tissue with the α1‐agonist norfenefrine, the α1, 2β‐agonist norepinephrine, and both agents in combination with the α1‐antagonist urapidil. The effect of β‐adrenoceptor stimulation was assessed by orciprenaline. Changes in local blood flow were determined using the ethanol escape technique. Results: Both norfenefrine and norepinephrine induced a concentration‐dependent decrease of interstitial glucose concentration, with a greater decrease observed with norepinephrine. Preperfusion of adipose tissue with urapidil inhibited glucose decrease. The inhibition was overcome with high concentrations of norfenefrine and norepinephrine, respectively. Both adrenergic agents induced tachyphylaxia. Urapidil enhanced extracellular glucose level at high concentration. Blood flow decreased in the presence of norfenefrine and norepinephrine but increased in response to urapidil. The accelerated blood flow due to urapidil was counteracted by norepinephrine and norfenefrine. Orciprenaline decreased interstitial glucose concentration and increased nutritive blood flow. The observed changes in blood flow induced by adrenergic agents were not related to glucose uptake. Discussion: The stimulatory effect of the sympathetic nerves on glucose uptake in subcutaneous adipose tissue appears to be mediated by the α1‐adrenoceptor. Norepinephrine enhances glucose entry into adipocytes independently of insulin action. In obese subjects with insulin resistance, the α1‐adrenergic receptor may provide an important alternative pathway for glucose uptake.  相似文献   

19.
Summary The distribution of formaldehyde-induced fluorescence and acetylcholine-esterase (AChE) activity was histochemically investigated in certain salivary glands of the cow (submandibular gland), guinea pig and hamster (submandibular and sublingual glands). Adrenergic nerves occur around the secretory acini of the bovine, guinea pig and hamster submandibular glands, as well as around those of the hamster sublingual gland. The mucous secretory acini of the guinea pig sublingual gland, however, seem to be devoid of adrenergic nerve supply. Except in the sublingual gland of the hamster, no adrenergic nerves occur in relation to duct cells.The pattern of AChE activity is similar to that of adrenergic nerves. Thus, AChE-positive nerves form a network around secretory acini of all the five glands examined. Furthermore, AChE activity was also observed in nerve fibres in close proximity to striated duct cells.Both adrenergic and AChE-containing fibres were observed around blood vessels of different sizes. Ganglionic cells are occasionally to be seen; they all display AChE-activity. No adrenergic ganglionic cells were observed in any of the glands examined.All glands were also studied in the electron microscope. Interest was focussed on the fine structure of the autonomic nerves with special reference to their contents and type of storage vesicles.The content of noradrenaline was chemically determined in each type of salivary gland studied.This work was supported by grants from the University of Umeå and from the Swedish Society for Medical Research and was also carried out within a research organization supported by the Swedish Medical Research Council (projects B73-04X-712-08C and B73-04X-56-09C). The authors are indebted to Miss Kristina Karlsson and Miss Marianne Borg for valuable technical assistance.  相似文献   

20.
Location and release of TRH and 5-HT from amphibian skin   总被引:3,自引:0,他引:3  
The occurrence and release of thyrotrophin-releasing hormone (TRH) and 5-hydroxytryptamine (5-HT) from amphibian skin have been described by previous investigators. In the present study, the precise location and site of release of TRH and 5-HT from the skin of Rana pipiens and Xenopus laevis have been examined using a combination of procedures including immunohistochemistry, HPLC, and radioimmunoassay. The results indicate that TRH is located specifically within the dermal glands of these species, and that both TRH and 5-HT are discharged from these glands following adrenergic stimulation. The origin and functional significance of these substances in amphibian skin granular glands are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号