首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individuals of most bat species hang head‐down by their toenails from rough surfaces, but Madagascar's endemic sucker‐footed bat (Myzopoda aurita) clings head‐up to smooth leaves using specialized pads on its wrists and ankles. We investigated the adhesive performance of 28 individuals and found that attachment performance on brass was not affected by the presence or absence of a seal around the pad–surface interface. Furthermore, on smooth acrylic, the wrist pads were more than nine‐fold weaker when lifted perpendicular to the surface than when pulled parallel to it. The unimportance of a seal and the difference in strength in those directions on a smooth surface are characteristic of wet adhesion, but not of suction. Thus, despite its name, the sucker‐footed bat appears to adhere using wet adhesion. We observed that when wrist pads were pushed anteriorly, they unpeeled easily from the surface because of deformation of the pads. This most likely permits rapid detachment during crawling, but would also cause passive detachment if bats roosted head‐down. This provides an ecomorphological explanation to the head‐up roosting behaviour of these unique bats. The results obtained in the present study thus link morphology, behaviour, and roosting ecology for an enigmatic Malagasy endemic. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 233–240.  相似文献   

2.
1. The interaction between the density of ingesta and gravity observed in the digestive systems of ruminant herbivores should receive attention in other non‐ruminant herbivorous mammals. The resting postures adopted by non‐ruminants are of particular interest. 2. A new interpretation of established findings regarding the digestive tract of sloths illustrates that the interplay of posture, anatomy, the density of ingesta and gravity can provide a novel explanation of behavioural and morphological adaptations in herbivores, as the average particle size and dry‐matter content increases within their forestomach from its caudal towards its cranial portion. In sloths, this could be indicative of a stratification of ingesta occurring in the upright sitting posture adopted while resting, as opposed to their characteristic upside down posture when moving. 3. The sitting resting posture of sloths could therefore be an adaptation to exploit the tendency of the forestomach contents to stratify in order to pass larger, more difficult‐to‐digest particles faster from the fermentation chamber.  相似文献   

3.
Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.  相似文献   

4.
Extant rhinoceroses share the characteristic nasal horn, although the number and size of horns varies among the five species. Although all species are herbivores, their dietary preferences, occipital shapes, and common head postures vary. Traditionally, to predict the “usual” head posture (the most used head posture of animals during normal unstressed activities, i.e., standing) of rhinos, the occipital shape was used. While a backward inclined occiput implies a downward hanging head (often found in grazers), a forward inclined occiput is related to the horizontal head posture in browsing rhinos. In this study, the lateral semicircular canal (LSC) of the bony labyrinth was virtually reconstructed from µCT‐images in order to investigate a possible link between LSC orientation and head posture in extant rhinoceroses. The usual head posture was formerly reconstructed for several non‐rhinoceros taxa with the assumption that the LSC of the inner ear is held horizontal (parallel to the ground) during normal activity of the living animal. The current analysis of the LSC orientation resulted in a downward inclined usual head posture for the grazing white rhinoceros and a nearly horizontal head posture in the browsing Javan rhinoceros. The other three browsing or mixed feeding species show subhorizontal (closer to horizontal than a downgrade inclination) head postures. The results show that anatomical and behavioral aspects, like occipital shape, presence and size of horns/tusk‐like lower incisors, as well as feeding and feeding height preferences influence the usual head posture. Because quantitative behavioral data are lacking for the usual head postures of the extant rhinos, the here described relationship between the LSC orientation and the resulting head posture linked to feeding preferences gives new insights. The results show, that the inner ear provides additional information to interpret usual head postures linked to feeding preferences that can easily be adapted to fossil rhinoceroses.  相似文献   

5.
A model is described that explains the evolution of adult butterfly settling posture. The role of climate and the activity of butterflies is fundamental in determining the effectiveness of primary and secondary visual defence systems based on wing colour and pattern. Both dorsal (open winged) and lateral (closed wing) postures can be regarded as evolutionarily conservative; common postures are found within almost all sub-families. Lateral postures tend to be associated with cool temperate and arctic climates. Conditions that are marginal for activity place an emphasis on the development of underside primary defence, uncompromised by secondary visual defences. In turn, any primary defensive function of the upper surface is reduced but secondary defence may be emphasized. There is interaction between segregation of functions on different wing surfaces and the development of lateral posture. The use of predictable hostplant-habitat structures reduces the role of visual communication in mate-location and facilitates the adoption of a lateral resting posture and a cryptic underside wing pattern. When hostplant-habitat structures are unpredictable but a lateral posture is adopted, primary defence is more important than visual communication for the resting insect. Adjustments of wing morphology facilitate postural conservatism, allowing species to retain particular postures in new hostplant-habitats and climatic zones.  相似文献   

6.
This paper presents a novel, legged robot, Abigaille-Ⅲ, which is a hexapod actuated by 24 miniature gear motors. This robot uses dual-layer dry adhesives to climb smooth, vertical surfaces. Because dry adhesives are passive and stick to various surfaces, they have advantages over mechanisms such as suction, claws and magnets. The mechanical design and posture of Abigaille-Ⅲ were optimized to reduce pitchback forces during vertical climbing. The robot's electronics were designed around a Field Programmable Gate Array, producing a versatile computing architecture. The robot was reconfigured for vertical climbing with both 5 and 6 legs, and with 3 or 4 motors per leg, without changes to the electronic hardware. Abigaille-Ⅲ demonstrated dexterity through vertical climbing on uneven surfaces, and by transferring between horizontal and vertical sur- faces. In endurance tests, Abigaille-Ⅲ completed nearly 4 hours of continuous climbing and over 7 hours of loitering, showing that dry adhesive climbing systems can be used for extended missions.  相似文献   

7.
The opercularis system (OPS) of amphibians consists of an opercularis muscle that connects the shoulder girdle skeleton to the operculum, a movable element in the oval window of the otic capsule. The role of the OPS in reception of vibrations was examined in bullfrogs (Rana catesbeiana) tested in various postures that manipulated differential motion between the shoulder girdle (the origin of the opercularis muscle) and skull (including the inner ear). Amplitude and phase relationship of motions of the suprascapular cartilage of the shoulder girdle and the posterior skull were also measured during these tests. 1. Microphonic responses to vertical vibrations from 25-200 Hz were typically highest when frogs were in a normal, sitting posture with the head held off the vibrating platform. Responses from animals in which the head directly contacted the platform were often less (by up to 10 dB at certain frequencies). Responses from all test positions were highest at lower frequencies, especially between 50-100 Hz. 2. Suprascapular accelerations were typically highest in the normal, sitting posture, and at lower frequencies (50-75 Hz) were often greater than that of the vibrating platform by up to 8 dB. The shoulder girdle skeleton of the bullfrog is therefore readily affected by vertical substrate motion. 3. The amplitude of microphonic responses in the different test postures did not correspond well with head acceleration. Rather, response amplitude corresponded best with the absolute difference between shoulder and head motion. For example, in the normal posture, suprascapular motion was much greater than head motion, and responses were relatively high. If only the head was vibrated, head motion was high and shoulder motion low, and responses also were relatively high. If the head and body were vibrated together, their motions were similar, and responses to the same platform accelerations were often reduced. Phase differences between shoulder and head motions were small at the frequencies examined and may be of little functional significance. The importance of differences in shoulder and head motion suggests that the resulting differential motion of the operculum and inner ear fluids can produce waves that stimulate appropriate end organs (such as the saccule). 4. Removal of the opercularis muscle reduced responses up to 18 dB at certain frequencies in some of the test postures. The most significant reductions were observed in those postures with a significant difference between shoulder and head motion (such as the normal posture).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Body mass has been shown in experimental and comparative morphological studies to have a significant effect on joint posture in major limb joints. The generalizability of experimental studies is limited by their use of small sample sizes and limited size ranges. In contrast, while comparative morphological studies often have increased sample sizes, the connection between joint posture and morphological variables is often indirect. The current study infers joint postures for a large sample of primates using an experimentally validated method, and tests whether larger primates use more extended joint postures than smaller species. Postures are inferred through the analysis of patterns of subchondral bone apparent density on the medial femoral condyle. Femora from 94 adult wild‐shot individuals of 28 species were included. Apparent density measurements were obtained from CT scans using AMIRA software, and the angular position of the anterior‐most extent of the region of maximum apparent density on the medial femoral condyle was recorded. In general, the hypothesis that larger‐bodied primates use more extended knee posture was supported, but it should be noted that considerable variation exists, particularly at small body sizes. This indicates that smaller species are less constrained by their body size, and their patterns of apparent density are consistent with a wide range of knee postures. The size‐related increase in inferred joint posture was observed in most major groups of primates, and this observation attests to the generalizability of Biewener's model that relates body size and joint posture. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Supersonic shear imaging (SSI) is an ultrasound imaging modality that can provide insight into tissue mechanics by measuring shear wave propagation speed, a property that depends on tissue elasticity. SSI has previously been used to characterize the increase in Achilles tendon shear wave speed that occurs with loading, an effect attributable to the strain-stiffening behavior of the tissue. However, little is known about how shear wave speed varies spatially, which is important, given the anatomical variation that occurs between the calcaneus insertion and the gastrocnemius musculotendon junction. The purpose of this study was to investigate spatial variations in shear wave speed along medial and lateral paths of the Achilles tendon for three different ankle postures: resting ankle angle (R, i.e. neutral), plantarflexed (P; R – 15°), and dorsiflexed (D; R+15°). We observed significant spatial and posture variations in tendon shear wave speed in ten healthy young adults. Shear wave speeds in the Achilles free tendon averaged 12±1.2 m/s in a resting position, but decreased to 7.2±1.8 m/s with passive plantarflexion. Distal tendon shear wave speeds often reached the maximum tracking limit (16.3 m/s) of the system when the ankle was in the passively dorsiflexed posture (+15° from R). At a fixed posture, shear wave speeds decreased significantly from the free tendon to the gastrocnemius musculotendon junction, with slightly higher speeds measured on the medial side than on the lateral side. Shear wave speeds were only weakly correlated with the thickness and depth of the tendon, suggesting that the distal-to-proximal variations may reflect greater compliance in the aponeurosis relative to the free tendon. The results highlight the importance of considering both limb posture and transducer positioning when using SSI for biomechanical and clinical assessments of the Achilles tendon.  相似文献   

10.
<正> Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are currently able to function evenbetter than natural dry adhesives on smooth surfaces under normal loading. However, the adhesion of these single level syntheticdry adhesives on rough surfaces is still not optimal because of the reduced contact surface area. In nature, contact area ismaximized by hierarchically structuring different scales of fibres capable of conforming surface roughness. In this paper, weadapt the nature's solution arid propose a novel dual-level hierarchical adhesive design using Polydimethylsiloxane (PDMS),which is tested under peel loading at different orientations. A negative macro-scale mold is manufactured by using a laser cutterto define holes in a Poly(methyl methacrylate) (PMMA) plate. After casting PDMS macro-scale fibres by using the obtainedPMMA mold, a previously prepared micro-fibre adhesive is bonded to the macro-scale fibre substrate. Once the bondingpolymer is cured, the micro-fibre adhesive is cut to form macro scale mushroom caps. Each macro-fibre of the resulting hierarchicaladhesive is able to conform to loads applied in different directions. The dual-level structure enhances the peel strengthon smooth surfaces compared to a single-level dry adhesive, but also weakens the shear strength of the adhesive for a given areain contact. The adhesive appears to be very performance sensitive to the specific size of the fibre tips, and experiments indicatethat designing hierarchical structures is not as simple as placing multiple scales of fibres on top of one another, but can requiresignificant design optimization to enhance the contact mechanics and adhesion strength.  相似文献   

11.
Signalling self‐ability to maintain vigilance may help in securing a mate, while providing accurate information about vigilance status may result in conspecifics adjusting their own scanning rate of the environment, potentially to the individual's benefit. In birds, vigilance is often associated with head‐up postures adopted within a bout of head‐down activity, and this can be used by conspecifics to assess the vigilance of their flock mates. However, vigilance behaviour is not always obvious and other cues may then be used to assess vigilance rates of conspecifics. Here we assess whether iris/eyelid/face patterns from 43 duck species are consistent with the hypothesis that eyelid brightness has evolved so as to contrast with iris brightness, which may then help in signalling individual vigilance status. Ducks generally flock when resting during the day, and because of their wide visual fields, individuals can monitor their environment while remaining in a resting head‐down position. Ducks also show a wide variety of plumage and iris patterns, with both light‐headed and dark‐headed species. Matching our prediction, most ducks with dark irises had pale eyelids, irrespective of head colour. Furthermore, the smaller number of species with a pale iris generally have darker eyelids. A phylogenetic analysis shows a clear and significant association in the evolution of eyelid and iris brightness patterns in both males and females. These data therefore provide support for the hypothesis that eyelid brightness has evolved to act as a contrast with iris brightness. Further studies are now needed to examine the extent to which and the way this is used in vigilance information transfer between individuals.  相似文献   

12.
Large eddy simulations (LESs) are performed to study the flow characteristics around two flight posture models of ski jumping. These models are constructed by three-dimensionally scanning two national-team ski jumpers taking flight postures. The drag and lift forces on each component of a ski jumper and skis (head with helmet and goggle, body, arms, legs and skis) and their lift-to-drag ratios are obtained. For the two posture models, the drag forces on the body, legs and skis are larger than those on the arms and head with helmet and goggle, but the lift forces on the body and skis are larger than their drag forces, resulting in high lift-to-drag ratios on the body and skis and low lift-to-drag ratio on the legs. We construct simple geometric models, such as the circular cylinder, sphere and thin rectangular plate, predicting the drag and lift forces on each component of a ski jumper and skis, and validate them with those obtained from LES. Using these geometric models, we perform a parametric study on the position angles of flight posture for higher total lift-to-drag ratio. The flight postures obtained increase the total lift-to-drag ratios by 35% and 21% from those of two base postures, respectively. Finally, LESs are performed for the postures obtained and show the increases in the total lift-to-drag ratios by 21% and 16%, respectively, indicating the adequacy of using the simple geometric models for finding a flight posture of ski jumping having a higher lift-to-drag ratio at low cost.  相似文献   

13.
Changes in ambient temperature and solar radiation may affect sloths' metabolic rate and body temperature, with consequent changes in activities, postures and microhabitat selection. Although the separate effect of temperature and solar radiation on sloth's behaviour have been previously studied, the combined effect of these climatic factors on behavioural aspects of sloths has never been systematically evaluated in field conditions. Here we evaluated the influence of hourly ambient temperature variation on maned sloth (Bradypus torquatus) activities, postures and tree crown positions, under sunny and cloudy conditions; and tested if any of the animal posture and position increase their exposure to human detection. We performed 350 h of visual observation on eight maned sloths, equipped with radio-backpacks, in northern Bahia, Brazil, recording their activities, and their resting postures and positions on tree crowns. We also recorded the time taken to visualize the sloths on 58 days to analyse if sloths' detection is affected by posture and position. Higher ambient temperature, within a range of 21–33°C, increased the sloths' activity levels in cloudy conditions but reduced their activity in sunny conditions. Increasing ambient temperature also reduced the frequency of huddled posture and increased the frequency of extended posture and permanence in the inner tree crown. Lastly, the postures and positions did not influence sloths' detectability. Thus, the direction of the temperature–activity relationship depends on climatic conditions (sunny/cloudy), and individuals rely on resting postures and positions to thermoregulate. The warmer and drier future climate, expected to occur in the northern Atlantic Forest, may impose change in the diurnal activity levels and postural pattern for this threatened species, leading maned sloths to reduce its activity on sunny and warmer days and adopting an extended posture.  相似文献   

14.
We addressed the question whether gravity-dependent differences in passive tension and length of the diaphragm are associated with differences in its regional activation. By using intramuscular electrodes, we measured the electromyographic activity of different parts of the diaphragm (Edi) during quiet breathing in several postures in 13 anesthetized mongrel dogs. The Edi of the left and right costal hemi-diaphragm was compared between the left and right lateral decubitus postures, whereas that from the substernal and crural regions was compared between the supine and prone positions. On changing posture, the Edi of the dependent part of the diaphragm decreased in both cases, whereas that of the non-dependent part increased. The results were consistent with reflex modulation of regional diaphragm activation in response to postural changes in local resting length. However, these changes in Edi persisted after bilateral vagotomy, cordotomy (C7-T1) and dorsal rhizotomy of the C5-C7 roots. Compound muscle action potentials, recorded in different regions of the diaphragm and evoked by supramaximal stimulation of the phrenic nerves, were altered with changes in posture in the same direction as Edi. Because the stimuli were supramaximal, these changes reflected systematic changes in the recording conditions with posture, possibly because of a combination of 1) changes in the electrical environment surrounding the intramuscular electrodes and 2) passive changes in muscle length. Our results demonstrate systematic, reproducible, posture-dependent changes in regional Edi that may not be due to different neural drive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Nonprimate terrestrial mammals may use digitigrade postures to help moderate distal limb joint moments and metapodial stresses that may arise during high‐speed locomotion with high‐ground reaction forces (GRF). This study evaluates the relationships between speed, GRFs, and distal forelimb kinematics in order to evaluate if primates also adopt digitigrade hand postures during terrestrial locomotion for these same reasons. Three cercopithecine monkey species (Papio anubis, Macaca mulatta, Erythrocebus patas) were videotaped moving unrestrained along a horizontal runway instrumented with a force platform. Three‐dimensional forelimb kinematics and GRFs were measured when the vertical force component reached its peak. Hand posture was measured as the angle between the metacarpal segment and the ground (MGA). As predicted, digitigrade hand postures (larger MGA) are associated with shorter GRF moment arms and lower wrist joint moments. Contrary to expectations, individuals used more palmigrade‐like (i.e. less digitigrade) hand postures (smaller MGA) when the forelimb was subjected to higher forces (at faster speeds) resulting in potentially larger wrist joint moments. Accordingly, these primates may not use their ability to alter their hand postures to reduce rising joint moments at faster speeds. Digitigrady at slow speeds may improve the mechanical advantage of antigravity muscles crossing the wrist joint. At faster speeds, greater palmigrady is likely caused by joint collapse, but this posture may be suited to distribute higher GRFs over a larger surface area to lower stresses throughout the hand. Thus, a digitigrade hand posture is not a cursorial (i.e. high speed) adaptation in primates and differs from that of other mammals. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
We studied the diet, activity budget, vertical ranging, and postural behaviour in relation to weather of the three-toed sloth (Bradypus variegatus flaccidus) in disturbed montane forest remnants (1150 m asl) in northern Venezuela. Sloths spent most (72.9%) of their time resting and had a nearly exclusive (99.4%) leaf diet. While resting they assumed a sitting – not hanging – posture mostly (90.2% of observations). Species of three families, Clethraceae, Cecropiaceae, and Clusiaceae accounted for 77% of feeding records. Young leaves (67.2%) accounted for most of the leaf diet. Activity and posture were dependent on weather conditions. Sloths fed more often during mid-day hours and tended to rest more at dawn and dusk. In northern Venezuela sloths tended to use more frequently the upper strata of the canopy, while in warmer lowland sites they use intermediate levels more often. They adopted postures that maximized exposure of ventral surfaces to incident solar radiation when sunny, but minimized their surface area by huddling when cloudy, foggy or rainy. We propose that sunning behaviour of sloths may speed up their fermentation rate, and ultimately, might have been an important selective factor in the evolution of derived upside-down posture of sloths.  相似文献   

17.
Cervical spine injuries often happen in dynamic environments (e.g., sports and motor vehicle crashes) where individuals may be moving their head and neck immediately prior to impact. This motion may reposition the cervical vertebrae in a way that is dissimilar to the upright resting posture that is often used as the initial position in cadaveric studies of catastrophic neck injury. Therefore our aim was to compare the “neutral” cervical alignment measured using fluoroscopy of 11 human subjects while resting in a neutral posture and as their neck passed through neutral during the four combinations of active flexion and extension movements in both an upright and inverted posture. Muscle activation patterns were also measured unilaterally using surface and indwelling electromyography in 8 muscles and then compared between the different conditions. Overall, the head posture, cervical spine alignment and muscle activation levels were significantly different while moving compared to resting upright. Compared to the resting upright condition, average head postures were 6–13° more extended, average vertebral angles varied from 11° more extended to 10° more flexed, and average muscle activation levels varied from unchanged to 10% MVC more active, although the exact differences varied with both direction of motion and orientation. These findings are important for ex vivo testing where the head and neck are statically positioned prior to impact – often in an upright neutral posture with negligible muscle forces – and suggest that current cadaveric head-first impact tests may not reflect many dynamic injury environments.  相似文献   

18.
Despite several studies on the attachment ability of different insect taxa, little is known about this phenomenon in adult Lepidoptera. In this study we combined morphological and experimental analyses of tarsal adhesive devices and the attachment ability of the codling moth Cydia pomonella (L.) (Lepidoptera, Tortricidae) to smooth surfaces. Pretarsi of C. pomonella attach to smooth substrates by means of their smooth, flexible and well developed arolia. Using the centrifugal force measurement technique, friction forces of males and females were assessed on hydrophobic and hydrophilic glass surfaces. Adults of both sexes generated similar forces in spite of the noticeable difference in their body masses. That is why males showed significantly higher safety factors (attachment force divided by body weight) compared to those of females. Hydrophobicity of the substrate had no considerable effect on friction forces. For females, friction forces (sliding parallel to the substrate plane) were compared with adhesive forces (pulling off perpendicularly from the substrate plane) measured on Plexiglas surfaces. It can be concluded that the attachment system of C. pomonella is rather robust against physico-chemical properties of the substrate and is able to achieve a very good attachment on vertical and horizontal substrata.  相似文献   

19.
Effect of posture and locomotion on energy expenditure   总被引:3,自引:0,他引:3  
Energy expenditure for human adults and infants and for dogs was measured in resting (supine or lateral) posture, in bipedal posture and locomotion, and in quadrupedal posture and locomotion. Variations in respiratory and heart rate and in body temperature were utilized in this comparative study. Oxygen consumption was also measured in human adults. In human adults, bipedal posture and locomotion were shown to be much less energy-consuming than corresponding quadrupedal posture and locomotion. The opposite was observed in adult dogs, where bipedalism was shown to be much more energy-consuming than quadrupedalism. In addition, this study demonstrated, for human adults in their natural erect posture, an energy expenditure barely higher than in supine or lateral resting posture, while the dogs in their natural quadrupedal stance, the energy expenditure is much higher than in their resting posture. With respect to energy, therefore, humans are more adapted to bipedalism than dogs to quadrupedalism. Human children, at the transitional stage between quadrupedalism and bipedalism, have high and almost equal requirements for all postures and locomotions. This demonstrates, in term of energy, their incomplete adaptation to erect behavior.  相似文献   

20.
In vivo length and shortening of canine diaphragm with body postural change   总被引:1,自引:0,他引:1  
Using sonomicrometry, we measured the in vivo tidal shortening and velocity of shortening of the costal and crural segments of the diaphragm in the anesthetized dog in the supine, upright, tailup, prone, and lateral decubitus postures. When compared with the supine position, end-expiratory diaphragmatic length varied by less than 11% in all postures, except the upright. During spontaneous breathing, the tidal shortening and the velocity of shortening of the crural segment exceeded that of the costal segment in all postures except the upright and was maximal for both segments in the prone posture. We noted the phasic integrated electromyogram to increase as the end-expiratory length of the diaphragm shortened below and to decrease as the diaphragm lengthened above its optimal length. This study shows that the costal and crural segments have a different quantitative behavior with body posture and both segments show a compensation in neural drive to changes in resting length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号