首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological invasions and land‐use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land‐use is a key driver of alien species invasions, it is often assumed that land‐use is constant in time. Here we combine historical and present day information, to evaluate whether land‐use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present‐day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present‐day data on land‐uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land‐use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land‐use changes predicted invasion dynamics better than models assuming constant land‐use over the last 50 years. Scenarios of future land‐use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land‐use is not constant in time: land‐use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land‐use class may vary in time. An integration of land‐use changes in studies of biological invasions can help to improve management strategies.  相似文献   

2.
Land‐use change is one of the biggest threats to biodiversity globally. The effects of land use on biodiversity manifest primarily at local scales which are not captured by the coarse spatial grain of current global land‐use mapping. Assessments of land‐use impacts on biodiversity across large spatial extents require data at a similar spatial grain to the ecological processes they are assessing. Here, we develop a method for statistically downscaling mapped land‐use data that combines generalized additive modeling and constrained optimization. This method was applied to the 0.5° Land‐use Harmonization data for the year 2005 to produce global 30″ (approx. 1 km2) estimates of five land‐use classes: primary habitat, secondary habitat, cropland, pasture, and urban. The original dataset was partitioned into 61 bio‐realms (unique combinations of biome and biogeographical realm) and downscaled using relationships with fine‐grained climate, land cover, landform, and anthropogenic influence layers. The downscaled land‐use data were validated using the PREDICTS database and the geoWiki global cropland dataset. Application of the new method to all 61 bio‐realms produced global fine‐grained layers from the 2005 time step of the Land‐use Harmonization dataset. Coarse‐scaled proportions of land use estimated from these data compared well with those estimated in the original datasets (mean R2: 0.68 ± 0.19). Validation with the PREDICTS database showed the new downscaled land‐use layers improved discrimination of all five classes at PREDICTS sites (< 0.0001 in all cases). Additional validation of the downscaled cropping layer with the geoWiki layer showed an R2 improvement of 0.12 compared with the Land‐use Harmonization data. The downscaling method presented here produced the first global land‐use dataset at a spatial grain relevant to ecological processes that drive changes in biodiversity over space and time. Integrating these data with biodiversity measures will enable the reporting of land‐use impacts on biodiversity at a finer resolution than previously possible. Furthermore, the general method presented here could be useful to others wishing to downscale similarly constrained coarse‐resolution data for other environmental variables.  相似文献   

3.
Aim Anthropogenic changes in land use may have major consequences for global biodiversity. However, species diversity is determined by a suite of factors that may affect species differently at different spatial scales. We tested the combined effects of land use and spatial scale on α, β and γ diversity in the tropics using experimental communities of cavity‐nesting bees and waSPS (Hymenoptera: Aculeata). We aimed to determine whether: (1) land‐use intensity negatively affects species richness of cavity‐nesting Hymenoptera, (2) β diversity, both within and between plots, is higher in more natural systems, (3) species richness of flowering herbs correlates positively with species richness of Hymenoptera within and across habitats, (4) richness of cavity‐nesting Hymenoptera in highly modified habitats declines with increasing distance from natural or semi‐natural habitats, (5) the effects of land use, herb diversity and forest distance on Hymenoptera α and β diversity vary at different spatial scales, and (6) bees and waSPS respond to land use in a similar way. Location Manabi, south‐west Ecuador. Methods We examined diversity (species richness) within 48 plots of five habitat types that comprised a gradient of decreasing agricultural intensity from rice and pasture to coffee agroforests, unmanaged abandoned agroforests and forest fragments, using standardized nesting resources for reproducing communities of cavity‐nesting bees and waSPS. Results (1) Land use significantly affected α diversity of trap‐nesting bees and waSPS at the subplot (per trap) scale, but not subplot β diversity or plot‐scale species richness (γ diversity). (2) Beta diversity was surprisingly higher between plots within a land‐use type than between land‐use types. (3) Species richness of bees and waSPS increased with diversity of flowering herbs at the subplot (trap) scale only. (4) Forest distance correlated positively with bee species richness at the plot scale only. (5) Land use, herb diversity and forest distance each showed significant correlations with bee and wasp diversity at only one spatial scale. (6) Despite differences in life history, bees and waSPS responded to land‐use intensity in a similar way. Main conclusions The effects of land use on species richness were highly dependent on spatial scale. Subplot‐scale analyses showed that rice and pasture contained the highest species diversity, whereas plot‐scale analyses showed no significant difference in the diversity of different land‐use types. We emphasize caution in the estimation of biodiversity at only one spatial scale, and highlight the surprisingly large contribution of managed land to the regional biodiversity of these species.  相似文献   

4.
5.
Two major components of global change: land‐use changes and intentional or accidental species introduction are threatening the conservation of native species worldwide. In particular, Mediterranean coastal areas are highly susceptible to the invasion of alien species and they also have experienced major changes in land use such as agricultural abandonment and urbanization. However, there has been little research done which quantitatively links biological invasions and the components of land‐use changes (i.e. number, trajectory and direction of the changes). We analysed the current distribution and abundance of Cortaderia selloana (Schultes et Schultes fil.) Asch. et Graebner, an alien ornamental species, in 332 fields in Aiguamolls de l'Empordà (Catalonia, NE Spain) and related the patterns of invasion to spatiotemporal data on land‐use changes from 1956 to 2003. Our aim was to determine which land uses had been more susceptible to C. selloana invasion during the last 5 years and to find out which components of land‐use changes triggered invasion. We found that 22.30% of the fields are currently invaded. In the last 5 years, fields have triplicated the total density of C. selloana. The presence of C. selloana decreases with the distance from urban areas. Invasion is over‐represented in pastures and old‐fields, and it has increased with time since abandonment. The presence of C. selloana was also associated to fields that had experienced many changes in land use in the last 46 years. The most heavily invaded fields were those that were pastures in 1956 and are now old fields in 2003. On average, the largest plants are found in agricultural field margins and in fields that had a disturbed land use both in 1956 and in 2003. Furthermore, pastures had the lowest proportion of reproductive plants. Overall, current C. selloana patterns of invasion can be explained by the historical legacy of land‐use changes.  相似文献   

6.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

7.
There is increasing evidence that species can evolve rapidly in response to environmental change. However, although land use is one of the key drivers of current environmental change, studies of its evolutionary consequences are still fairly scarce, in particular studies that examine land‐use effects across large numbers of populations, and discriminate between different aspects of land use. Here, we investigated genetic differentiation in relation to land use in the annual grass Bromus hordeaceus. A common garden study with offspring from 51 populations from three regions and a broad range of land‐use types and intensities showed that there was indeed systematic population differentiation of ecologically important plant traits in relation to land use, in particular due to increasing mowing and grazing intensities. We also found strong land‐use‐related genetic differentiation in plant phenology, where the onset of flowering consistently shifted away from the typical time of management. In addition, increased grazing intensity significantly increased the genetic variability within populations. Our study suggests that land use can cause considerable genetic differentiation among plant populations, and that the timing of land use may select for phenological escape strategies, particularly in monocarpic plant species.  相似文献   

8.
Changes in land use strongly influence habitat attributes (e.g., herbaceous ground cover and tree richness) and can consequently affect ecological functions. Most studies have focused on the response of these ecological functions to land‐use changes within only a single vegetation type. These studies have often focused solely on agricultural conversion of forests, making it nearly impossible to draw general conclusions across other vegetation types or with other land‐use changes (e.g., afforestation). We examined the consequences of agricultural conversion for seed removal by ants in native grassland, savanna, and savanna‐forest habitats that had been transformed to planted pastures (Brachiaria decumbens) and tree plantations (Eucalyptus spp.) and explored if changes in seed removal were correlated with differences in habitat attributes between habitat types. We found that land‐use changes affected seed removal across the tree cover gradient and that the magnitude of impact was influenced by similarity in habitat attributes between native and converted habitats, being greater where there was afforestation (Eucalyptus spp in grassland and savanna). Herbaceous ground cover, soil hardness, and tree richness were the most important habitat attributes that correlated with differences in seed removal. Our results reveal that the magnitude of impact of land‐use changes on seed removal varies depending on native vegetation type and is associated with the type of habitat attribute change. Our findings have implications for biodiversity in tropical grassy systems: afforestation can have a greater detrimental impact on ecological function than tree loss.  相似文献   

9.
In the conservation literature on land‐use change, it is often assumed that land‐use intensification drives species loss, driving a loss of functional trait diversity and ecosystem function. Modern research, however, does not support this cascade of loss for all natural systems. In this paper we explore the errors in this assumption and present a conceptual model taking a more mechanistic approach to the species–functional trait association in a context of land‐use change. We provide empirical support for our model's predictions demonstrating that the association of species and functional trait diversity follows various trajectories in response to land‐use change. The central premise of our model is that land‐use change impacts upon processes of community assembly, not species per se. From the model, it is clear that community context (i.e. type of disturbance, species pool size) will affect the response trajectory of the relationship between species and functional trait diversity in communities undergoing land‐use change. The maintenance of ecosystem function and of species diversity in the face of increasing land‐use change are complementary goals. The use of a more ecologically realistic model of responses of species and functional traits will improve our ability to make wise management decisions to achieve both aims in specific at‐risk systems.  相似文献   

10.
1. Broad‐scale assessment of stream health is often based on correlative relationships between catchment land‐use categories and measurements of stream biota or water chemistry. Few studies have attempted to characterise the response curves that describe how measures of ecosystem function change along gradients of catchment land use, or explored how these responses vary at broad spatial scales. 2. In autumn 2008, we conducted a survey of 84 streams in three bioregions of New Zealand to assess the sensitivity of functional indicators to three land‐use gradients: percentage of native vegetation cover, percentage of impervious cover (IC) and predicted nitrogen (N) concentration. We examined these relationships using general linear models and boosted regression trees to explore monotonic, non‐monotonic and potential threshold components of the response curves. 3. When viewing the responses to individual land‐use gradients, four of five functional indicators were positively correlated with the removal of native vegetation cover and N. In general, weaker and less responsive models were observed for the IC gradient. An analysis of the response to multiple stressors showed δ15N of primary consumers and gross primary productivity (GPP) to be the most responsive functional indicators to land‐use gradients. The multivariate models identified thresholds for change in the relationship between the functional indicators and all three land‐use gradients. Apparent thresholds were <10%IC, between 40 and 80% loss of native vegetation cover and at 0.5 and 3.2 mg L?1 N. 4. The strength of regression models and the nature of the response curves suggest that measures of ecosystem function exhibit predictable relationships with land use. Furthermore, the responses of functional indicators varied little among three bioregions. This information provides a strong argument for the inclusion of functional indicators in a holistic assessment of stream health.  相似文献   

11.
1. Ecosystems are strongly influenced by land use practices. However, identifying the mechanisms behind these influences is complicated by the many potential pathways (often indirect) between land use and ecosystems and by the long‐lasting effects of past land use. To support ecosystem restoration and conservation efforts, we need to better understand these indirect and lasting effects. 2. We constructed structural equation models (SEM) to evaluate the direct and indirect effects of contemporary (2002) land use (agriculture and development) and change in land use from 1952 to 2002 on present‐day streams (n = 190) in Maryland, U.S.A. Additional variables examined included site location, system size, altitude, per cent sand in soils, riparian condition, habitat quality, stream water NO3‐N and benthic macroinvertebrate and fish measures of stream condition. Our first SEM (2002 Land Use) included the proportions of contemporary agriculture and development in catchments in the model. The second SEM (Land Use Change) included five measures of land use change (proportion agricultural in both times, developed in both times, agricultural in 1952 and developed in 2002, forested in 1952 and developed in 2002 and agricultural in 1952 and forested in 2002). 3. The data set fit both SEMs well. The 2002 Land Use model explained 71% of variation in NO3‐N and 55%, 42% and 38% of variation in riffle quality, macroinvertebrate condition and fish condition, respectively. The Land Use Change model explained similar amounts of variation in NO3‐N (R2 = 0.72), riffle quality (R2 = 0.57) and macroinvertebrate condition (R2 = 0.44) but slightly more variation in fish condition (R2 = 0.43). 4. Both models identified pathways through which landscape variables affect stream responses, including negative direct effects of latitude on macroinvertebrate and fish conditions and positive direct and indirect effects of altitude on NO3‐N, riffle quality and macroinvertebrate and fish conditions. The 2002 Land Use model showed contemporary development and agriculture had positive total effects on NO3‐N (both through direct pathways); contemporary development had negative effects on macroinvertebrate condition. The Land Use Change model showed that contemporary developed land that was forested in 1952 had no effects on NO3‐N; current developed land that was developed or agricultural in 1952 showed positive effects on NO3‐N. Forests that were agricultural in 1952 had negative effects on NO3‐N, suggesting reduced NO3‐N export with reforestation. The Land Use Change model also showed negative total effects of all types of contemporary developed land (developed, agricultural or forested in 1952) on benthic condition. Developed land that was forested in 1952 had negative effects on fish condition. Forest sites that were agricultural in 1952 had negative effects on fish and macroinvertebrate conditions, suggesting a long‐term imprint of abandoned agriculture in stream communities. 5. Our analyses (i) identified multiple indirect effects of contemporary land use on streams, (ii) showed that current land uses with different land use histories can exhibit different effects on streams and (iii) demonstrated an imprint of land use lasting >50 years. Knowledge of these indirect and long‐term effects of land use will help to conserve and restore streams.  相似文献   

12.
We studied the ecological characteristics of 45–50‐yr‐old subtropical dry forest stands in Puerto Rico that were growing on sites that had been deforested and used intensively for up to 128 yr. The study took place in the Guánica Commonwealth Forest. Our objective was to assess the long‐term effects of previous land use on this forest—i.e., its species composition, structure, and functioning. Previous land‐use types included houses, farmlands, and charcoal pits. Stands with these land uses were compared with a nearby mature forest stand. The speed and path of forest recovery after deforestation and land‐use abandonment depended on the conditions of the land. Study areas where land uses had removed the forest canopy and altered soil conditions (houses and farmlands) required a longer time to recover and had a different species composition than study areas where land uses retained a forest canopy (charcoal pits). Different forest attributes recovered at different rates. Crown area index, stem density, and litterfall rate recovered faster than stemwood and root, biomass, tree height, and basal area. Where previous land uses removed the canopy, Leucaena leucocephala, a naturalized alien pioneer species, dominated the regrowth. Native species dominated abandoned charcoal pits and mature forest. The change in species composition, including the invasion of alien species, appears to be the most significant long‐term effect of human use and modification of the landscape.  相似文献   

13.
Aim We assessed whether different patterns of land use within similar physiognomic catchments (= watersheds) produced discernible effects on avian assemblages and, if so, whether such effects were related to particular land‐use activities (e.g. extensive cropping). Location Murray–Darling Basin in south‐eastern Australia. Methods We used a recently (2007) published physiognomic classification of catchments based on different stream orders as our template. We used a subset of data from the second Birds Australia atlas to calculate reporting rates for each species in each subcatchment. We linked these two sets of data with proportions of major land uses within catchments to identify whether differences in proportions of land uses altered the expected avifauna for catchments of the same nominal physiognomic class. Results A significant proportion of the variation in bird reporting rates was explained by the physiognomic classification. Additional explanatory power resulted from including an interaction matrix of land‐use covariates. Livestock grazing was a major explanatory variable in classes characterized by more mountainous catchments. Cropping affected avifaunas consistently by producing a more uniform assemblage. Main conclusions The physiognomic template was an important determinant of avifaunal composition, but its interaction with land‐use variation within physiognomic classes doubled the amount of variance explained. Within a physiognomic class, if one identifies the ‘ideal’ avifaunal composition for that class one can identify land‐use mixes that are most likely to be beneficial for the avifaunas of that class and recommend directions for large‐scale management objectives vis‐à‐vis mixtures of land‐use types.  相似文献   

14.
Human activities such as logging and agriculture can severely damage forest ecosystems by changing forest structure, ecosystem function, and biodiversity. These changes may have long‐lasting consequences, which influence forest recovery. We investigated the effect of past human disturbance on the current distribution of an understory, achlorophyllous orchid, Wullschlaegelia calcarata in Puerto Rico's tropical rain forest after 70 yr of recovery. Our study site was the 16‐ha Luquillo Forest Dynamics Plot located in the Luquillo Experimental Forest, which has four areas with differing intensity of land use that have been distinguished from variation in canopy cover seen in aerial photographs taken in 1936. We recorded orchids in six 10‐m‐wide, 500‐m‐long transects across four different areas of land‐use history. We found that the orchid was not present in an area of the plot which had <20 percent canopy cover in 1936, and was most abundant in the area with >80 percent canopy cover, which had been minimally impacted by human activity. Tree species composition varied among land‐use history areas, and our observations suggested that this variation might be influencing the local distribution of W. calcarata. We also measured leaf litter biomass and identified the leaves of litter in areas with and without the orchid. Litter with a high proportion of Buchenavia tetraphylla leaves had more orchids. Even though human disturbance ceased in 1932, land‐use history in the Luquillo Forest still casts a shadow over the distribution of W. calcarata.  相似文献   

15.
Deforestation and agricultural land degradation in tropical regions can create conditions for growth of perennial plant species forming mono‐dominated patches (MDP). Such species might limit forest regeneration, and their proliferation forces the abandonment of fields and subsequent deforestation to establish new fields. Therefore, identifying factors fostering MDP species is critical for biodiversity conservation in human‐modified landscapes. Here, we propose a conceptual framework to identify such factors and apply it to the case of Pteridium aquilinum (bracken fern), a light‐demanding species, tolerant of low soil fertility and fire. We hypothesize that bracken proliferation is promoted by land‐use changes that increase light availability, especially in sites with low soil fertility and land uses involving fire. We assessed this idea using agricultural fields in southeastern Mexico with different land‐use change histories and quantifying prevalence and cover of bracken. Five different land‐use change histories resulted from transitions among forest, crop, pasture, and fallow field stages. Of the 133 fields sampled, 71 percent had P. aquilinum; regression tree analysis indicated that 65 percent of inter‐field variation in prevalence and 90 percent in cover was explained by land‐use change history and soil type. Maximum prevalence, cover, and rates of increase in bracken were found on fields with low fertility sandy/clay soils, which had been used for crops and pasture, were frequently burned, and had high levels of light. Fields on fertile alluvial soil never used for pasture were bracken‐free. Agriculture promoting high light environments on less fertile soils is a major cause of bracken proliferation and likely that of other MDP species.  相似文献   

16.
Aim We evaluate differences between and the applicability of three linear predictive models to determine butterfly hotspots in Belgium for nature conservation purposes. Location The study is carried out in Belgium for records located to Universal Transverse Mercator (UTM) grid cells of 5 × 5 km. Methods We first determine the relationship between factors correlated to butterfly diversity by means of modified t‐tests and principal components analysis; subsequently, we predict hotspots using linear models based on land use, climate and topographical variables of well‐surveyed UTM grid cells (n = 197). The well‐surveyed squares are divided into a training set and an evaluation set to test the model predictions. We apply three different models: (1) a ‘statistically focused’ model where variables are entered in descending order of statistical significance, (2) a ‘land use‐focused’ model where land use variables known to be related to butterfly diversity are forced into the model and (3) a ‘hybrid’ model where the variables of the ‘land use‐focused model’ are entered first and subsequently complemented by the remaining variables entered in descending order of statistical significance. Results A principal components analyses reveals that climate, and to a large extent, land use are locked into topography, and that topography and climate are the variables most strongly correlated with butterfly diversity in Belgium. In the statistically focused model, biogeographical region alone explains 65% of the variability; other variables entering the statistically focused model are the area of coniferous and deciduous woodland, elevation and the number of frost days; the statistically focused model explains 77% of the variability in the training set and 66% in the evaluation set. In the land use‐focused model, biogeographical region, deciduous and mixed woodland, natural grassland, heathland and bog, woodland edge, urban and agricultural area and biotope diversity are forced into the model; the land use‐focused model explains 68% of the variability in the training set and 57% in the evaluation set. In the hybrid model, all variables from the land use‐focused model are entered first and the covariates elevation, number of frost days and natural grassland area are added on statistical grounds; the hybrid model explains 78% of the variability in the training set and 67% in the evaluation set. Applying the different models to determine butterfly diversity hotspots resulted in the delimitation of spatially different areas. Main conclusions The best predictions of butterfly diversity in Belgium are obtained by the hybrid model in which land use variables relevant to butterfly richness are entered first after which climatic and topographic variables were added on strictly statistical grounds. The land use‐focused model does not predict butterfly diversity in a satisfactory manner. When using predictive models to determine butterfly diversity, conservation biologists need to be aware of the consequences of applying such models. Although, in conservation biology, land use‐focused models are preferable to statistically focused models, one should always check whether the applied model makes sense on the ground. Predictive models can target mapping efforts towards potentially species‐rich sites and permits the incorporation of un‐surveyed sites into nature conservancy policies. Species richness distribution maps produced by predictive modelling should therefore be used as pro‐active conservation tools.  相似文献   

17.
18.
Assessing the impact of land‐use changes on soil respiration (RS) is of vital significance to understand the interactions between belowground metabolism and regional carbon budgets. In this study, the monthly in situ RS was examined between 09:00 and 12:00 hours over a 3‐year period within a representative land‐use sequence in the subtropical region of China. The land‐use sequence contained natural forest (control treatment), secondary forest, two plantations, citrus orchard and sloping tillage land. Results showed that the RS exhibited a distinct seasonal pattern, and it was dominantly controlled by the soil temperature. After the land‐use conversion, the apparent temperature sensitivity of RS (Q10) was increased from 2.10 in natural forest to 2.71 in sloping tillage land except for an abnormal decrease to 1.66 in citrus orchard. Contrarily, the annual RS was reduced by 32% following the conversion of natural forest to secondary forest, 46–48% to plantations, 63% to citrus orchard and 50% to sloping tillage land, with the average reduction of 48%. Such reduction of annual RS could be explained by the decrease of topsoil organic carbon and light‐fraction organic carbon storages, live biomass of fine root (<2 mm) and annual litter input, which indirectly/directly correlated with plant productivity. Our results suggest that substrate availability (e.g., soil organic carbon and nutrients) and soil carbon input (e.g., fine root turnover and litterfall) through plant productivity may drive the RS both in natural and managed ecosystems following strong disturbance events.  相似文献   

19.
Flow disturbances and conversions of land‐use types are two major factors that influence river ecosystems. However, few studies have considered their interactions and separated their individual effects on aquatic organisms. Using monthly monitoring data from two streams with different land‐use types (i.e. forest and agriculture) in the subtropical Central China over three years, we accurately predicted the changes of macroinvertebrate communities under flood disturbances and land‐use type conversions. The dominant taxa and main community metrics significantly declined following flash floods. Several mayflies and chironomid had rapid rates of recovery, which could reach high abundance in three months after floods. And most of the community metrics recovered more rapidly in the forested river than that in the agricultural river. Stepwise multiple regression (SMR) models were used to investigate the relationships between biotic metrics and hydrological and temporal variables. For example, SMR revealed that floods reduced the stability of benthic communities, and the length of low flow period was of considerable importance to the recovery of the fauna. Two‐way ANOVA indicated that intra‐annual fluctuation had more (e.g. the total abundance and wet biomass), equal (e.g. total richness, EPT richness, percent EPT abundance, and Margalef index), or less (e.g. tolerant value) influence on macroinvertebrate communities than land‐use types. Consequently, the effects of floods on macroinvertebrates should be taken into account when macroinvertebrates are used as indicators for assessing river ecosystem. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
1. Although many studies have focussed on the effects of catchment land use on lotic systems, the importance of broad (catchment) and fine (segment/reach) scale effects on stream assemblages remain poorly understood. 2. Nine biological metrics for macrophytes (498 sites), benthic macroinvertebrates (491) and fish (478) of lowland and mountain streams in four ecoregions of France and Germany were related to catchment and riparian buffer land use using partial Redundancy Analysis and Boosted Regression Trees (BRTs). 3. Lotic fauna was better correlated (mean max., r = 0.450) than flora (r = 0.277) to both scales of land use: the strongest correlations were noted for mountain streams. BRTs revealed strong non‐linear relationships between mountain assemblage metrics and land use. Correlations increased with increasing buffer lengths, suggesting the importance of near‐stream land use on biotic assemblages. 4. Several metrics changed markedly between 10–20% (mountain ecoregions) and 40–45% (lowland) of arable land use, irrespective of the buffer size. At mountain sites with >10% catchment arable land use, metric values differed between sites with <30% and sites with >30% forest in the near‐stream riparian area. 5. These findings support the role of riparian land use in catchment management; however, differences between mountain and lowland ecoregions support the need for ecoregion‐specific management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号