首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined four species of sea pen (Anthoptilum grandiflorum, Halipteris finmarchica, Pennatula aculeata and Pennatula grandis) collected from the Gulf of St. Lawrence and mouth of the Laurentian Channel, eastern Canada. An exponential length–weight relationship was found for all four species, where growth in weight was progressively greater than growth in length with increasing colony size. Halipteris finmarchica, P. grandis and P. aculeata presented the better allometric fits, explaining over 80% of the variance. In addition, a count of growth increments visible in transverse sections in 86 A. grandiflorum and 80 P. aculeata samples was made. Presumed ages ranged between 5 and 28 years for A. grandiflorum and 2 and 21 years for P. aculeata. Radiocarbon assays were inconclusive and could not be used to confirm these ages; further age validation is required. Radial growth of the rod is slow during the first years, increasing at intermediate sizes of the colony and slowing down again for large colonies. Similar results were obtained from the relationship between colony length and number of growth increments where a logistic model was the best fit to the data. On average Spearman’s rank correlations showed 11% of shared variance between sea pen length or weight and environmental variables. Bottom temperature and salinity, depth and summer primary production were significantly correlated to sea pen size for most species.  相似文献   

2.
Anthoptilum grandiflorum and Halipteris finmarchica are two deep-sea corals (Octocorallia: Pennatulacea) common on soft bottoms in the North Atlantic where they are believed to act as biogenic habitat. The former also has a worldwide distribution. To assist conservation efforts, this study examines spatial and temporal patterns in the abundance, diversity, and nature of their faunal associates. A total of 14 species were found on A. grandiflorum and 6 species on H. finmarchica during a multi-year and multi-site sampling campaign in eastern Canada. Among those, 7 and 5 species, respectively, were attached to the sea pens and categorized as close associates or symbionts. Rarefaction analyses suggest that the most common associates of both sea pens have been sampled. Biodiversity associated with each sea pen is analyzed according to season, depth and region using either close associates or the broader collection of species. Associated biodiversity generally increases from northern to southern locations and does not vary with depth (∼100–1400 m). Seasonal patterns in A. grandiflorum show higher biodiversity during spring/summer due to the transient presence of early life stages of fishes and shrimps whereas it peaks in fall for H. finmarchica. Two distinct endoparasitic species of highly modified copepods (families Lamippidae and Corallovexiidae) commonly occur in the polyps of A. grandiflorum and H. finmarchica, and a commensal sea anemone frequently associates with H. finmarchica. Stable isotope analyses (δ13C and δ15N) reveal potential trophic interactions between the parasites and their hosts. Overall, the diversity of obligate/permanent associates of sea pens is moderate; however the presence of mobile/transient associates highlights an ecological role that has yet to be fully elucidated and supports their key contribution to the enhancement of biodiversity in the Northwest Atlantic.  相似文献   

3.
The gross morphology of soft coral surface sclerites has been studied for taxonomic purposes for over a century. In contrast, sclerites located deep in the core of colonies have not received attention. Some soft coral groups develop massive colonies, in these organisms tissue depth can limit light penetration and circulation of internal fluids affecting the physiology of coral tissues and their symbiotic algae; such conditions have the potential to create contrasting calcifying conditions. To test this idea, we analyzed the crystal structure of sclerites extracted from different colony regions in selected specimens of zooxanthellate and azooxanthellate soft corals with different colony morphologies, these were: Sarcophyton mililatensis, Sinularia capillosa, Sinularia flexibilis, Dendronephthya sp. and Ceeceenus levis. We found that the crystals that constitute polyp sclerites differ from those forming stalk sclerites. We also observed different crystals in sclerites located at various depths in the stalk including signs of sclerite breakdown in the stalk core region. These results indicate different modes of calcification within each colonial organism analyzed and illustrate the complexity of organisms usually regarded as repetitive morphological and functional units. Our study indicates that soft corals are ideal material to study natural gradients of calcification conditions. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
Alcyonacean octocorals in tropical reefs are usually not considered as reef builders. Some Sinularia species, however, are capable of consolidating sclerites at the colony base to form spiculite. Nanwan Bay, southern Taiwan, features both fossilized and recently formed boulders composed of spiculite, thus demonstrating the role of Sinularia in contributing to the reef structure. Section radiography of an 18.5 kg spiculite boulder demonstrated a regular density banding of 3–6-mm intervals. Core survey indicated spiculite coverage of 25–30% on the live reef and of 30–40% on the uplifted boulders. Cores taken from living Sinularia revealed a distinct transition from discrete sclerites to compact spiculite and amorphous calcium carbonate cementing the sclerites. In the widespread S. gibberosa, sclerite formation appeared to start intracellularly, followed by a prolonged extracellular calcification process. At the calcification site, multiple sclerocytes formed expanded pseudopod-like membranes that interconnected, forming multicellular vesicles (MCVs) around the sclerites. The MCVs and the pseudopods disappeared at sclerite maturation, followed by degradation of the sclerocytes around the mature sclerites. At the colony base, granular vesicles were distributed among the sclerites, indicating a cementing process in progress. These findings suggest that colonies of Sinularia are able to cement sclerites and consolidate them at their base into spiculite, thus making them reef builders.  相似文献   

5.
The taxonomy of French ninespined sticklebacks (Pungitius spp.) has long been controversial. To clarify the taxonomy in this group, we use mitochondrial (COI) and nuclear (RNF213) sequence markers, as well as morphological data. In France, both genetic markers discriminate three evolutionary lineages. Morphological analysis on fresh and type specimens supports the different lineages and the existence of three species in France. Pungitius pungitius, occurring in the North of France and Rhone basin, is characterized by specimens longer than 35 mm SL, by a flat head with a straight or slightly concave snout, typically 9–10 dorsal spines, 10–11 dorsal soft rays, 9–10 anal soft rays, 0–12 scutes on the caudal peduncle with a keel reaching the last anal‐fin ray, longer pelvic fin, post‐dorsal and caudal peduncle lengths, and a slim caudal peduncle (caudal peduncle depth/length 11.8%–21.9%). Pungitius laevis, occurring in France, in the English Channel basins and Loire drainage, differs from the other species by a head rounded with concave snout in specimens longer than 35 mm SL, accentuating the impression of fleshy lips, 0–4 scutes on the caudal peduncle and a higher caudal peduncle depth/length ratio (15.7%–34.5%). Finally, Pungitius vulgaris, endemic to the Vienne River and rivers of south‐western France as far north as the Garonne estuary, is differentiated by a rounded head with a straight or slightly convex snout, the absence of scutes on the caudal peduncle and by having 11 pectoral‐fin rays. Our data confirm the existence of a hybridization zone in the North of France between P. pungitius and P. laevis. As a result, Pungitius lotharingus is invalid, as it was described based on hybrid specimens. A lectotype for P. laevis was designated because the syntypes included hybrids. This revision provides new perspectives for evolutionary biology studies and will have consequences for Pungitius conservation in France.  相似文献   

6.
The seasonal growth and reproductive phenology of Neorhodomela aculeata (Perestenko) Masuda and Ceramium kondoi Yendo, and the food preferences of herbivorous snails were examined to elucidate (i) why snails select the fronds of N. aculeata for their habitat; and (ii) the survival strategies of the two red algae under grazing pressures. The maximal lengths and weights of both algal species were recorded for each season over a 12‐month period beginning with the spring of 2003. C. kondoi grew in length at a faster rate than N. aculeate, whereas the turf alga N. aculeata produced new branches from the tips of broken branches. The reproductive period of C. kondoi was between the spring and summer but the reproductive organs of N. aculeata were observed throughout the year. The algal loss rate of fresh N. aculeata to snails was low but snails had a food preference for N. aculeata when compared to C. kondoi in an artificial food experiment. These results indicate that snails may adapt to chemical compounds characteristic of N. aculeata and that the alga further reduces predation damage by its structural resistance. In conclusion, the survival strategies of C. kondoi appear to be rapid growth, seasonal sexual reproduction, and a delicately branched frond morphology that reduces stable feeding patterns of its predators plus high tissue nitrogen content, whereas the survival strategy of N. aculeata includes regenerative growth responses, structural toughness and chemical defenses while under the grazing pressure of herbivorous snails.  相似文献   

7.
Two known and two new species of Diplectanocotyla Yamaguti, 1953 (D. gracilis Yamaguti, 1953, D. megalopis Rakotofiringa & Oliver, 1987, D. langkawiensis n. sp. and D. parva n. sp.) were collected from Megalops cyprinoides (Megalopidae) off Langkawi, Kedah and Matang, Perak, Peninsular Malaysia. All four species possess similar types of sclerotised male and female reproductive structures and similar soft anatomical features. The squamodisc sclerites of all four species have spine-like projections with varying degrees of visibility and shapes (sharp-pointed to triangular). In D. megalopis and D. langkawiensis n. sp. the spines are sharp-pointed and distinct on sclerites from rows 5–6 onwards. In D. gracilis and D. parva n. sp. the sclerite spines are triangular, lightly sclerotised and occur on almost all of the sclerites. D. parva n. sp. has comparatively the smallest set of anchors, bars, squamodiscs and squamodisc suckers. The anchors and bars of the other three species are almost similar in overall size, and the main distinguishing feature is the relative lengths of the inner and outer roots of the ventral anchors. In D. gracilis the outer root is very much smaller than the inner root and they are disposed almost at a right angle to each other. In D. megalopis the outer root is usually about half the length of the inner root and the roots are inclined at c.60° to each other. In D. langkawiensis n. sp. the roots are inclined at c.40° degrees and the outer root is of a similar length or only slightly shorter than the inner root. The openings of the two squamodisc suckers of all four Diplectanocotyla species are surrounded by tiny scale-like spines. Bifid tegumental spines are found in the posterior region of all four species, differing only in their extent: in D. parva n. sp. the tegumental spines are only distributed in the peduncular region and not beyond, whilst in the other three species the tegumental spines extend from the posterior level of the testis to the end of the peduncle. An amended diagnosis of Diplectanocotyla and a key to its species are appended.  相似文献   

8.
A new genus and species of sea pen or virgulariid pennatulacean from the Gulf of Guinea in the tropical eastern Atlantic is described, and a key to the genera of the Virgulariidae is included. The new genus and species described here adds to the previously described five other genera of the family. It is distinguished by unique sclerite and polyp leaf characters from the superficially-similar genus Virgularia, which lacks conspicuous sclerites in the polyp leaves and coenenchyme (other than minute oval bodies that are generally <0.01 mm in length).  相似文献   

9.
Temperature requirements for embryo growth and germination were determined for seeds of Osmorhiza occidentalis, O. chilensis, and Erythronium grandiflorum collected in western North America (Utah). Initially, embryos were 1.2, 0.6, and 0.8 mm in length, respectively, and they grew to 9.4, 9.2, and 4.1 mm, respectively, before germination occurred. Embryo growth and germination occurred during cold stratification (1, 5, 5/1 C), without a warm stratification pretreatment. However, warm stratification pretreatments at 30/15 C increased rates of embryo growth in O. occidentalis and E. grandiflorum seeds moved to low temperatures and germination rates in all three species. Optimum germination temperatures were 1, 5, or 5/1 C; gibberellic acid did not substitute for cold stratification. Thus, seeds of the three species have deep complex morphophysiological dormancy (MPD). In comparison, two species each of Osmorhiza and Erythronium from eastern North America have nondeep complex MPD and require warm followed by cold stratification for germination. Thus, disjunct species in genera with an Arcto-Tertiary distribution pattern can have different types of MPD. It is suggested that deep complex may have been derived from nondeep complex MPD.  相似文献   

10.
In total, seventy two Lactuca aculeata and three Lactuca serriola samples originating from natural populations of these species in Turkey, Jordan, and Israel were analysed by eight microsatellite and 287 amplified fragment length polymorphism (AFLP) markers. Neighbor–Network and Bayesian clustering were used for visualisation of the differences among the analysed L. aculeata and L. serriola samples, and to confirm hybrid origin (L. aculeata × L. serriola) of three samples (343-8A, 343-8B, 54/07) previously indicated by their morphological traits. Molecular data reflect the geographical origin, i.e., the clustering of samples according to their country of origin. Samples from neighbouring parts of Jordan and Israel expressed similar genetic characteristics, indicating the possibility of migration or artificial introduction of plant material. Forty-one L. aculeata samples were screened for their response to five Bremia lactucae races (Bl: 17, Bl: 18, Bl: 24, Bl: 27, and Bl: 28). Susceptible reactions of L. aculeata prevailed. L. aculeata samples were most frequently susceptible to races Bl: 18, Bl: 24, Bl: 27, Bl: 28; and least susceptible to Bl: 17. No highly efficient source of resistance was detected; however, race-specific reaction patterns were frequently recorded, indicating the possible presence of some race-specific resistance factors/genes in the studied samples of L. aculeata. Conservation and exploitation of this material in lettuce breeding is discussed.  相似文献   

11.

Background  

Colonial invertebrates such as corals exhibit nested levels of modularity, imposing a challenge to the depiction of their morphological evolution. Comparisons among diverse Caribbean gorgonian corals suggest decoupling of evolution at the polyp vs. branch/internode levels. Thus, evolutionary change in polyp form or size (the colonial module sensu stricto) does not imply a change in colony form (constructed of modular branches and other emergent features). This study examined the patterns of morphological integration at the intraspecific level. Pseudopterogorgia bipinnata (Verrill) (Octocorallia: Gorgoniidae) is a Caribbean shallow water gorgonian that can colonize most reef habitats (shallow/exposed vs. deep/protected; 1–45 m) and shows great morphological variation.  相似文献   

12.
Root rot caused by Rhizoctonia bataticola is a serious threat in cotton. Field experiments were conducted to study the influences of intercropping system in cotton with inorganic fertilizer and two bioinoculants (Azospirillum and Pseudomonas) on root rot incidence and yield of cotton. The results revealed that among the intercropping systems, cotton intercropping with Sesbania aculeata (1 : 1 ratio) recorded the highest rhizosphere colonization of Pseudomonas fluorescens in the year 2007 and 2008 and the lowest root rot incidence of 1.40, 2.49 and 3.90; 1.02, 2.22 and 5.98% at the vegetative, flowering and maturity stages in the year 2007 and 2008, respectively. From nutrient management practices, integration of Azospirillum and Pseudomonas with 50% recommended dose of NPK recorded the highest rhizosphere colonization of P. fluorescens in both years and the lowest root rot incidence of 1.40, 2.32 and 3.36; 1.07, 2.01 and 5.25% at vegetative, flowering and maturity stages in 2007 and 2008, respectively. Cotton + S. aculeata recorded the maximum number of sympodial branches (23.5 and 20.62/plant in 2007 and 2008, respectively) and the highest seed cotton yield of 2010 and 1894 kg/ha. The highest cotton equivalent yield (CEY) of 2052 and 1895 kg/ha was recorded in cotton + onion system, which was closely followed by cotton + S. aculeata system that had the CEY of 2010 and 1894 kg/ha in 2007 and 2008, respectively. The increased CEY is due to increased cost of onion compared with S. aculeata. Combined application of 100% recommended dose of NPK and bioinoculants recorded the seed cotton yield of 2227 and 1983 kg/ha and CEY of 2460 and 2190 kg/ha in 2007 and 2008, respectively. The lowest root rot incidence and increased yield in cotton + S. aculeata combined with 50% NPK and bioinoculants could be due to synergistic effect among the bioinoculants and S. aculeata.  相似文献   

13.
Agama anchietae is one of eight species of agama found in Namibia, its distribution range in the upper half of the country covers desert, Karoo and savannah type biomes and overlaps with that of some of its congeners. Here, we describe its sexual dimorphism, reproductive traits, predation, diet and nematode infection, and compare and contrast each aspect among the three biomes as well as to published findings for three other Namibian congenerics, Agama etoshae, Agama aculeata aculeata and Agama planiceps planiceps. Interesting similarities and differences were found among the biomes as well as with the three congenerics. Our hypothesis that the aspects studied in A. anchietae would be more in line with those of A. a. aculeata and A. etoshae, with which it shares similarities in body colouration, social organisation and microhabitat utilisation, was only partially confirmed. This cautions against using morphological and ecological similarities between agamas as proxies for making life-history strategy inferences.  相似文献   

14.
The deep sea is one of the most extensive ecosystems on earth. Organisms living there survive in an extremely harsh environment, and their mitochondrial energy metabolism might be a result of evolution. As one of the most important organelles, mitochondria generate energy through energy metabolism and play an important role in almost all biological activities. In this study, the mitogenome of a deep‐sea sea anemone (Bolocera sp.) was sequenced and characterized. Like other metazoans, it contained 13 energy pathway protein‐coding genes and two ribosomal RNAs. However, it also exhibited some unique features: just two transfer RNA genes, two group I introns, two transposon‐like noncanonical open reading frames (ORFs), and a control region‐like (CR‐like) element. All of the mitochondrial genes were coded by the same strand (the H‐strand). The genetic order and orientation were identical to those of most sequenced actiniarians. Phylogenetic analyses showed that this species was closely related to Bolocera tuediae. Positive selection analysis showed that three residues (31 L and 42 N in ATP6, 570 S in ND5) of Bolocera sp. were positively selected sites. By comparing these features with those of shallow sea anemone species, we deduced that these novel gene features may influence the activity of mitochondrial genes. This study may provide some clues regarding the adaptation of Bolocera sp. to the deep‐sea environment.  相似文献   

15.
Reproductive energy investment in corals: scaling with module size   总被引:2,自引:0,他引:2  
Leuzinger S  Anthony KR  Willis BL 《Oecologia》2003,135(4):524-531
In colonial modular organisms, differences in module size and colony growth patterns among species have the potential to impose varying constraints on reproductive investment. Here, we compare reproductive output among seven morphologically different species of spawning reef corals, and analyse the relationship between reproductive output and module (polyp) size. Reproductive output ranged between 132 and 384 J cm–2, with lipid constituting the key indicator of energy investment. Lipid decreased by 85–100%, whereas protein and carbohydrate were relatively invariant between pre- and post-spawning tissues in all species, representing 1–15% and <1%, respectively, of the energy investment to reproductive output. The ratio of energy content in reproductive to somatic tissues (gonadosomatic index, GSI) varied among species from 0.20 (Symphyllia recta) to 1.31 (Acropora tenuis), the latter being the highest value reported for any iteroparous marine invertebrate. Surprisingly, small-polyped species (Acropora, Montipora) had 2- to 6-fold higher GSIs than large-polyped ones (Lobophyllia, Symphyllia). Energy equivalents of tissues increased with the 1.50–1.76 power of polyp diameter for somatic tissues and with the 1.42–1.80 power of polyp diameter for reproductive output. In both cases, increases in energy equivalents with polyp diameter were less than the scaling exponent of 3 predicted for an isometric relationship between tissue volume (or mass) and polyp diameter, indicating significant constraints of space, design or physiological energetics with increasing polyp size. We hypothesise that such constraints have played a key role in the evolution of modularity in cnidarians.  相似文献   

16.
Karyotypes of species sects. Linum and Adenolinum have been studied using C/DAPI-banding, Ag-NOR staining, FISH with 5S and 26S rDNA and RAPD analysis. C/DAPI-banding patterns enabled identification of all homologous chromosome pairs in the studied karyotypes. The revealed high similarity between species L. grandiflorum (2n = 16) and L. decumbens by chromosome and molecular markers proved their close genome relationship and identified the chromosome number in L. decumbens as 2n = 16. The similarity found for C/DAPI-banding patterns between species with the same chromosome numbers corresponds with the results obtained by RAPD-analysis, showing clusterization of 16-, 18- and 30-chromosome species into three separate groups. 5S rDNA and 26S rDNA were co-localized in NOR-chromosome 1 in the genomes of all species investigated. In 30-chromosome species, there were three separate 5S rDNA sites in chromosomes 3, 8 and 13. In 16-chromosome species, a separate 5S rDNA site was also located in chromosome 3, whereas in 18-chromosome species it was found in the long arm of NOR-chromosome 1. Thus, the difference in localization of rDNA sites in species with 2n = 16, 2n = 30 and 2n = 18 confirms taxonomists opinion, who attributed these species to different sects. Linum and Adenolinum, respectively. The obtained results suggest that species with 2n = 16, 2n = 18 and 2n = 30 originated from a 16-chromosome ancestor.  相似文献   

17.
When multiple groups of organisms experience similar environmental gradients, their patterns of differentiation might exhibit both shared and unique features. Here, we investigated the relative importance of three factors in generating body shape variation in a livebearing fish, Gambusia caymanensis, inhabiting the Cayman Islands: (i) shared patterns of divergent selection between predator regimes (presence/absence of piscivorous fish) driving replicated morphological differentiation, (ii) historical island effects yielding different morphologies across the three islands and (iii) unique effects of predation on morphological differentiation within each island. Shared effects of predation proved much more important than historical or unique effects. Populations coexisting with piscivorous fish exhibited larger caudal regions and smaller heads than conspecifics found in the absence of predatory fish. These results match a priori predictions, and mirror recent findings in a number of fish species, suggesting predation might often drive predictable morphological trends in disparate fishes. However, interestingly, the sexes achieved this morphological pattern through different means: head depth, caudal peduncle length and depth in males; head length, caudal peduncle depth in females. In G. caymanensis, we quantitatively confirmed that predation intensity represents a primary driver of body shape differentiation.  相似文献   

18.
19.
20.
Chancelloriids are a group of enigmatic sessile animals that are covered with sclerites shaped as rosettes of spines, producing an appearance like that of a barrel cactus. They are known only from Cambrian rocks. Isolated sclerites of chancelloriids are widespread in small shelly faunas, but they have proven difficult to treat taxonomically due to the variation within and between individual animals. We report on large samples of chancelloriid sclerites from the Meishucunian (pre‐trilobitic Lower Cambrian) of eastern Yunnan Province, China, including material from the Dahai Member of the Zhujiaqing Formation (the Zhujiaqing section, Dahai, Huize County) and the Shiyantou Formation (the Xiaotan section, Yongshan County). The material from the Dahai Member appears to come from a single species, Chancelloriella irregularis. Statistical analysis of morphotype co‐occurrences in different samples suggests that several species are represented in the material from the Shiyantou Formation, which we herein tentatively place in four species, Allonnia erromenosa, Allonnia tetrathallis, Archiasterella charma sp. nov. and Archiasterella cf. pentactina. We suggest therefore that careful study of large collections of isolated chancelloriid sclerites permits the identification of different species, opening the possibility of their use in evolutionary or stratigraphical studies. In particular, in South China, it seems that Chancelloriella irregularis is characteristic of rocks of the Paragloborilus subglobosusPurella squamulosa Assemblage Zone and the Watsonella crosbyi Assemblage Zone, whilst Archiasterella and Allonnia first appear in the overlying Sinosachites flabelliformisTannuolina zhangwentangi Assemblage Zone. C. irregularis is thus amongst the oldest well‐characterized chancelloriids, and the irregularity and poor organization of its sclerites relative to those of younger forms support the hypothesis that chancelloriid sclerites are compound structures arising from the fusion of originally separate elements, perhaps homologous with sclerites of halkieriids and other coeloscleritophorans. The similarity between the arrangement of rays in a chancelloriid sclerite and the arrangement of bubbles in small bubble clusters suggests that in many cases, aspects of the form of chancelloriid sclerites are the result of simple physical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号