首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurocalcin (molecular weight 23,000 and 24,000) is a newly identified Ca2+ binding protein with three EF-hand domains and has a strong amino acid sequence homology with visinin and recoverin (Terasawa, M., Nakano, A., Kobayashi, R., and Hidaka, H. J. Biol. Chem. In press). We produced antibody against neurocalcin. Immunoblotting showed the presence of neurocalcin in bovine retina as well as brain, suggesting that neurocalcin was a neuron specific Ca2+ binding protein. Immunohistochemistry revealed the expression of neurocalcin in retinal amacrine cells and ganglion cells but not in the photoreceptor layer. This distribution of neurocalcin was quite different from that of visinin and recoverin. Our results suggest that neurocalcin may play an important role in a Ca2+ signal pathway of the nervous system.  相似文献   

2.
A 21,000-dalton Ca(2+)-binding protein (Walsh, M.P., Valentine, K.A., Ngai, P.K., Carruthers, C.A., and Hollengerg, M.D. (1984) Biochem. J. 224, 117-127) was purified from the rat brain and through the use of oligonucleotide probe based on partial amino acid sequence, cDNA clones were obtained from rat brain cDNA library. The complete amino acid sequence deduced from the cDNA contains 191 residues and has a calculated molecular mass of 22,142 daltons. There are three potential Ca(2+)-binding sites like the EF hands in the sequence. It displays striking sequence homology with visinin and recoverin, retina-specific Ca(2+)-binding proteins. Northern blot analysis revealed that the protein is highly and specifically expressed in the brain.  相似文献   

3.
We determined the cDNA sequence for neurocalcin, a novel calcium-binding protein in bovine brain. This clone (pCalN) has 582 nucleotides in the open reading frame including the termination codon TGA, 11 nucleotides of the 5' leader and 1251 nucleotides of the 3' noncoding region. The deduced amino acid sequence revealed that neurocalcin is composed of 193 amino acids, has a molecular mass of 22,284 daltons, and contains three putative calcium-binding sites (EF-hand motifs). By Northern blot analysis, 3.8kbp mRNA was detected in brain. The deduced amino acid sequence had a strong homology to visinin (46.5%) and recoverin (51.6%) in retina, suggesting that neurocalcin may play a visinin- or recoverin-like role in brain.  相似文献   

4.
We have isolated a cDNA clone encoding a novel calcium-binding protein of the recoverin family from rat brain cDNA library. This clone (PCB11) has 588 nucleotides in the open reading frame including the termination codon, 174 nucleotides of the 5' leader and 800 nucleotides of the 3' noncoding region. The complete amino acid sequence deduced from the cDNA is composed of 195 residues, has a calculated molecular mass of 22,574 Daltons, and contains three putative calcium-binding domains of the EF-hand structure. The deduced amino acid sequence has a striking sequence homology to those of the retinal recoverin family (recoverin, visinin, P26, 23kD protein, S-modulin) and the brain-derived recoverin family (P23k, 21-kDa CaBP and neurocalcin). Northern blot, in situ hybridization, immunoblot and immunohistochemical analyses revealed that the protein is exclusively expressed in pyramidal layer of the hippocampus. The protein was therefore designated hippocalcin.  相似文献   

5.
A guanine nucleotide-binding regulatory protein (G protein), with subunits designated as alpha 40 beta gamma, was identified and partially resolved from two other purified G proteins, Go (alpha 39 beta gamma) and Gi (alpha 41 beta gamma), found in bovine brain. The alpha 40 G protein subunit served as a substrate for ADP-ribosylation catalyzed by Bordetella pertussis toxin, as did alpha 39 and alpha 41. alpha 40 was shown to be closely related to, but distinct from, alpha 41 by reaction with various peptide antisera. An antiserum generated against a peptide derived from the sequence of a Gi alpha clone isolated from a rat C6 glioma cDNA library (Itoh, H., Kozasa, T., Nagata, S., Nakamura, S., Katada, T., Ui, M., Iwai, S., Ohtsuka, E., Kawasaki, H., Suzuki, K., and Kaziro, Y. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 3776-3780) reacted with alpha 40 to the exclusion of all other alpha subunits tested. Another antiserum generated against a peptide derived from an analogous region of a different Gi alpha clone from a bovine brain cDNA library (Nukuda, T., Tanabe, T., Takahashi, H., Noda, M., Haga, K., Haga, T., Ichiyama, A., Kangawa, K., Hiranaga, M., Matsuo, H., and Numa, S. (1986) FEBS Lett. 197, 305-310) reacted exclusively with alpha 41. Evidence is given for the existence of another form of alpha 41 that did not react with either of these two peptide antisera. The antisera were used to survey various rat tissues for the expression of alpha 40 and alpha 41.  相似文献   

6.
Recombinant GABAA (gamma-aminobutyrate-Type A) receptors that are sensitive to benzodiazepine receptor ligands can be generated by coexpression of alpha-, beta-, and gamma 2-subunit cDNAs (Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. (1989) Nature 338, 582-585; Pritchett, D. B., Lüddens, H., and Seeburg, P. H. (1989) Science 245, 1389-1392; Malherbe, P., Sigel, E., Baur, R., Perssohn, E., Richards, J. G., and Mohler, H. (1990) J. Neurosci. 10, 2330-2337). However, in brain tissue, only alpha- and beta-subunit proteins have so far been detected. To identify the size and distribution of the gamma 2-subunit protein in brain tissue, polyclonal antibodies were prepared against two synthetic peptides corresponding to amino acids 1-15 and 336-350 of the cDNA-derived rat gamma 2-subunit sequence. On Western blots, both anti-gamma 2-subunit antisera selectively labeled a 43-kDa protein. gamma 2-Subunit immunoreactivity was detected immunohistochemically in various brain regions, e.g. in the olfactory bulb, cerebral cortex, islands of Calleja, hippocampus, substantia nigra, and cerebellum. Immunoprecipitation with both antisera identified the gamma 2-subunit immunoreactivity in 40 and 50% of the native GABAA receptors purified from bovine and rat brains, respectively. Monoclonal antibody bd24 selectively recognizes the alpha 1-subunit, whereas bd17 recognizes both the beta 2- and beta 3-subunits (Ewert, M., Shivers, B. D., Lüddens, H., Mohler, H., and Seeburg, P. H. (1990) J. Cell Biol. 110, 2043-2048). Since either of these monoclonal antibodies (bd17 and bd24) precipitated approximately 90% of the GABAA receptors, the gamma 2-subunit is frequently associated with the alpha 1-subunit and the beta 2- and/or beta 3-subunit in vivo.  相似文献   

7.
Complementary DNAs that encode two forms of the alpha subunit (Gs alpha) of the guanine nucleotide-binding protein responsible for stimulation of adenylate cyclase (Gs) have been inserted into plasmid vectors for expression in Escherichia coli. Following transformation of either of these plasmids into E. coli K38, Gs alpha accumulates to 0.4-0.8 mg/liter (approximately 0.1% of total protein), as judged by immunoblot analysis with specific antisera. Based on deduced amino acid sequence, the two cDNAs should encode proteins with molecular weights of 44,500 and 46,000, respectively (Robishaw, J.D., Smigel, M. D., and Gilman, A. G. (1986) J. Biol. Chem. 261, 9587-9590). Expression of these cDNAs in E. coli yields proteins that co-migrate on sodium dodecyl sulfate-polyacrylamide gels with the Gs alpha subunits from S49 lymphoma cell membranes, with apparent molecular weights of 45,000 and 52,000, respectively. Low levels of activity are detected in the 100,000 X g supernatant after lysis and fractionation of E. coli expressing either form of Gs alpha. Partial purification of Gs alpha from E. coli lysates yields preparations in which significant and stable activity can be assayed. Both forms of Gs alpha migrate through sucrose gradients as soluble, monodisperse species in the absence of detergent. As expressed in E. coli, both forms of Gs alpha can reconstitute isoproterenol-, guanine nucleotide-, and fluoride-stimulated adenylate cyclase activity in S49 cyc-cell membranes to approximately the same degree and can be ADP-ribosylated with [32P]NAD+ and cholera toxin. However, based on the specific activity of purified rabbit liver Gs, only 1-2% of the Gs alpha expressed in E. coli appears to be active. Incubation of partially purified fractions of recombinant Gs alpha with guanosine 5'-(3-O-thio)triphosphate and resolved beta gamma subunits isolated from purified bovine brain G proteins results in a 7-10-fold increase in Gs activity. Incubation of bovine brain beta gamma with recombinant Gs alpha also leads to a dramatic increase in observed levels of cholera toxin-catalyzed [32P]ADP-ribosylation.  相似文献   

8.
cDNA clones coding for the regulatory subunit (RII beta) of type II cAMP-dependent protein kinase were isolated from a bovine brain cDNA expression library in lambda gt11. The cDNA codes for a protein of 418 amino acids which is 98% homologous to the rat and human RII beta proteins. A series of expression vectors coding for truncated RII beta proteins were constructed in pATH plasmids and fusion proteins were expressed in Escherichia coli. Polyclonal and monoclonal antibodies made against purified bovine brain RII were immunoreactive with the fusion proteins on Western blots. The expressed RII beta-fusion proteins were used in overlay assays to identify the region in RII beta which binds to microtubule-associated protein 2 (MAP2) and to the 75,000-dalton calmodulin-binding protein (P75) (Sarkar, D., Erlichman, J., and Rubin, C.S. (1984) J. Biol. Chem. 259, 9844-9846) in bovine brain. Fusion protein containing amino acids 1-50 of the RII beta NH2 terminus (RII beta(1-50)] bound to both MAP2 and P75 immobilized on nitrocellulose filters. A pATH11-directed fusion protein containing the 31 amino acid RII-binding site of the human MAP2 protein (MAP2(31)) (Rubino, H.M., Dammerman, M., Shafit-Zagardo, B., and Erlichman, J. (1989) Neuron 3, 631-638) also bound RII beta-fusion proteins containing RII beta amino acids 1-50. Three fusion proteins, RII beta(1-25), RII beta(25-96), and RII beta(1-265,25-96 deleted) did not bind to MAP2(31) nor P75. The results showed that the binding domain for MAP2 and P75 was located within the NH2-terminal 50 amino acids of RII beta. Preincubation of bovine heart protein kinase II alpha and RII beta(1-50) with MAP2(31) prevented their binding to both P75 and MAP2(31) that were immobilized on nitrocellulose, suggesting that the binding sites for MAP2 and P75 are located near each other or that the same site on RII was binding to both proteins.  相似文献   

9.
In purified preparations of human erythrocyte GTP-binding proteins, we have identified a new substrate for pertussis toxin, which has an apparent molecular mass of 43 kDa by silver and Coomassie Blue staining. Pertussis toxin-catalyzed ADP-ribosylation of the 43-kDa protein is inhibited by Mg2+ ion and this inhibition is relieved by the co-addition of micromolar amounts of guanine nucleotides. GTP affects the ADP-ribosylation with a K value of 0.8 microM. Addition of a 10-fold molar excess of purified beta gamma subunits (Mr = 35,000 beta; and Mr = 7,000 gamma) of other GTP-binding proteins results in a significant decrease in the pertussis toxin-mediated ADP-ribosylation of the 43-kDa protein. Treatment of the GTP-binding proteins with guanosine 5'-O-(thiotriphosphate) and 50 mM MgCl2 resulted in shifting of the 43-kDa protein from 4 S to 2 S on sucrose density gradients. Immunoblotting analysis of the 43-kDa protein with the antiserum A-569, raised against a peptide whose sequence is found in the alpha subunits of all of the known GTP-binding, signal-transducing proteins (Mumby, S. M., Kahn, R. A., Manning, D. R., and Gilman, A. G. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 265-259) showed that the 43-kDa protein is specifically recognized by the common peptide antiserum. A pertussis toxin substrate of similar molecular weight was observed in human erythrocyte membranes, bovine brain membranes, membranes made from the pituitary cell line GH4C1, in partially purified GTP-binding protein preparations of rat liver, and in human neutrophil membranes. Treatment of neutrophils with pertussis toxin prior to preparation of the membranes resulted in abolishment of the radiolabeling of this protein. From these data, we conclude that we have found a new pertussis toxin substrate that is a likely GTP-binding protein.  相似文献   

10.
Previous kinetic studies (Tolkovsky, A.M., Braun, S., and Levitzki, A. (1982) Proc. Natl. Acad. Sci. U. S.A. 79, 213-222) and biochemical studies (Arad, H., Rosenbusch, J., and Levitzki, A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6579-6583) from our laboratory suggest that Gs or alpha s remain associated with the catalytic subunit of adenylyl cyclase (C) throughout the activation cycle of adenylyl cyclase by hormone receptors. In this study we have purified GppNHp-activated bovine brain adenylyl cyclase over 3000-fold under mild solution conditions. We demonstrate that although the enzyme is permanently activated it retains the beta subunit when bound to a forskolin-agarose affinity column as long as it is not exposed to high salt concentrations. The stoichiometry of alpha s to beta to C is close to unity, suggesting that beta gamma subunits do not dissociate from Gs upon its activation. The complex gamma beta alpha s (GppNHp). C dissociates partially when migrating on a Superose 12 fast protein liquid chromatography molecular-seiving column. This partial dissociation probably results from the relatively diluted state of the enzyme at a high degree of purity. Prolonged ultracentrifugation of the complex also causes partial dissociation of the beta gamma subunits from alpha s (GppNHp). C. The apparent contradiction between the results reported here and the observation that beta gamma subunits inhibit cyclase activity when added to platelet membranes (Katada, T., Bokoch, G. M., Northrup, J. K., Ui, M., and Gilman, A. G. (1984a) J. Biol. Chem. 259, 3568-3577) is discussed. We suggest an alternative model to account for this inhibitory effect of added beta gamma subunits.  相似文献   

11.
In the present studies, we attempted to purify the native molecular forms of the c-ras proteins (c-ras p21s) from bovine brain crude membranes and separated at least three GTP-binding proteins (G proteins) cross-reactive with the antibody recognizing all of Ha-, Ki-, and N-ras p21s. Among them, one G protein with a Mr of about 21,000 was highly purified and characterized. The Mr 21,000 G protein bound maximally about 0.6 mol of [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)/mol of protein with a Kd value of about 30 nM. [35S]GTP gamma S-binding to Mr 21,000 G protein was inhibited by GTP and GDP, but not by other nucleotides such as ATP, UTP, and CTP. [35S]GTP gamma S-binding to Mr 21,000 G protein was inhibited by pretreatment with N-ethylmaleimide. Mr 21,000 G protein hydrolyzed GTP to liberate Pi with a turnover number of about 0.01 min-1. Mr 21,000 G protein was not copurified with the beta gamma subunits of the G proteins regulatory for adenylate cyclase. Mr 21,000 G protein was not recognized by the antibody against the ADP-ribosylation factor for Gs. The peptide map of Mr 21,000 G protein was different from those of the G proteins with Mr values of 25,000 and 20,000, designated as smg p25A and rho p20, respectively, which we have recently purified from bovine brain crude membranes. The partial amino acid sequence of Mr 21,000 G protein was identical with that of human c-Ki-ras 2B p21. These results indicate that Mr 21,000 G protein is bovine brain c-Ki-ras 2B p21 and that c-Ki-ras 2B p21 is present in bovine brain membranes.  相似文献   

12.
A fourth type of rabbit protein kinase C   总被引:8,自引:0,他引:8  
Three rabbit cDNA clones coding for three types of protein kinase C (PKC alpha, beta, and gamma) have recently been identified and the structures determined [Ohno, S., Kawasaki, H., Imajoh, S., Suzuki, K., Inagaki, M., Yokokura, H., Sakoh, T., & Hidaka, H. (1987) Nature (London) 325, 161-166]. By use of these cloned cDNAs as hybridization probes, a fourth type (delta) of cDNA clone, which encodes a protein highly homologous to PKC alpha, beta, and gamma, was identified. PKC delta is composed of 697 amino acid residues and contains several peptide sequences determined at the protein level with the brain PKC preparation. This indicates that this molecular type (PKC delta) is, along with PKC alpha, beta, and gamma, a constituent of the brain PKC preparation. Sequence comparison among the four PKC types revealed that PKC delta is somewhat distinct from the other PKC types. PKC delta shows 99% amino acid sequence identity with rat PKC type I [Knopf, J. L., Lee, M.-H., Sultzman, L. A., Kriz, R. W., Loomis, C. R., Hewick, R. M., & Bell, R. M. (1986) Cell (Cambridge, Mass.) 46, 491-502], indicating relationship of these PKC types. The mRNA for PKC delta is exclusively concentrated in the brain.  相似文献   

13.
A GTP-binding protein serving as the specific substrate of islet-activating protein (IAP), pertussis toxin, was partially purified from human leukemic (HL-60) cells that had been differentiated into neutrophil type. The partially purified protein, referred to as GHL, predominantly consisted of at least two polypeptides with molecular masses of 40,000 daltons (alpha) and 36,000 or 35,000 daltons (beta). The structure was similar to Gi or Go previously purified from rat brain as an alpha beta gamma-heterotrimeric IAP substrate (Katada, T., Oinuma, M., and Ui, M. (1986) J. Biol. Chem. 261, 8182-8191), although the existence of the gamma of GHL was unclear. The 40,000-dalton polypeptide contained the site for IAP-catalyzed ADP-ribosylation and the binding site for guanine nucleotide with a high affinity. The 36,000- and 35,000-dalton polypeptides were cross-reacted with the affinity-purified antibody raised against the beta of brain Gi and Go. Limited proteolysis with trypsin and immunoblot analyses with the use of the affinity-purified antibodies raised against the alpha of brain Gi or Go indicated that the alpha of GHL was different from the alpha of Gi or Go. Kinetics of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding to GHL was also quite different from that to brain Gi or Go. Incubation of GHL with GTP gamma S resulted in a resolution into GTP gamma S-bound alpha and beta(gamma) thus purified had abilities to inhibit a membrane-bound adenylate cyclase activity and to associate with the alpha of brain IAP substrate in a fashion similar to the beta gamma of brain IAP substrates, suggesting that there were no significant differences in the biological activities between the beta(gamma) of GHL and those of Gi or Go. Physiological roles of the new GTP-binding protein, GHL, purified from the neutrophil-like cells in receptor-mediated signal transduction are discussed.  相似文献   

14.
We have previously shown that soluble fractions obtained from human HL-60 granulocytes contain a phospholipase C which is markedly stimulated by the stable GTP analogue guanosine 5'-[3-O-thio]triphosphate (Camps, M., Hou, C., Jakobs, K. H. and Gierschik, P. (1990) Biochem. J. 271, 743-748]. To investigate whether this stimulation was due to a soluble alpha subunit of a heterotrimeric guanine-nucleotide-binding protein or a soluble low-molecular-mass GTP-binding protein, we have examined the effect of purified guanine-nucleotide-binding protein beta gamma dimers on the phospholipase-C-mediated formation of inositol phosphates by HL-60 cytosol. We found that beta gamma subunits, purified from bovine retinal transducin (beta gamma t), markedly stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate by this phospholipase C preparation. The stimulation of phospholipase C by beta gamma t was not secondary to a phospholipase-A2-mediated generation of arachidonic acid, was prevented by the GDP-liganded transducin alpha subunit and was additive to activation of phospholipase C by guanosine 5'-[3-O-thio]triphosphate. Beta gamma t also stimulated soluble phospholipase C from human and bovine peripheral neutrophils, as well as membrane-bound, detergent-solubilized phospholipase C from HL-60 cells. Stimulation of soluble HL-60 phospholipase C was not restricted to beta gamma t, but was also observed with highly purified beta gamma subunits from bovine brain. Fractionation of HL-60 cytosol by anion-exchange chromatography revealed the existence of at least two distinct forms of phospholipase C in HL-60 granulocytes. Only one of these forms was sensitive to stimulation by beta gamma t, demonstrating that stimulation of phospholipase C by beta gamma subunits is isozyme specific. Taken together, our results suggest that guanine-nucleotide-binding protein beta gamma subunits may play an important and active role in mediating the stimulation of phospholipase C by heterotrimeric guanine-nucleotide-binding proteins.  相似文献   

15.
We previously characterized PP1bp134 and PP1bp175, two neuronal proteins that bind the protein phosphatase 1 catalytic subunit (PP1). Here we purify from rat brain actin-cytoskeletal extracts PP1(A) holoenzymes selectively enriched in PP1gamma(1) over PP1beta isoforms and also containing PP1bp134 and PP1bp175. PP1bp134 and PP1bp175 were identified as the synapse-localized F-actin-binding proteins spinophilin (Allen, P. B., Ouimet, C. C., and Greengard, P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9956-9561; Satoh, A., Nakanishi, H., Obaishi, H., Wada, M., Takahashi, K., Satoh, K., Hirao, K., Nishioka, H., Hata, Y., Mizoguchi, A., and Takai, Y. (1998) J. Biol. Chem. 273, 3470-3475) and neurabin (Nakanishi, H., Obaishi, H., Satoh, A., Wada, M., Mandai, K., Satoh, K., Nishioka, H. , Matsuura, Y., Mizoguchi, A., and Takai, Y. (1997) J. Cell Biol. 139, 951-961), respectively. Recombinant spinophilin and neurabin interacted with endogenous PP1 and also with each other when co-expressed in HEK293 cells. Spinophilin residues 427-470, or homologous neurabin residues 436-479, were sufficient to bind PP1 in gel overlay assays, and selectively bound PP1gamma(1) from a mixture of brain protein phosphatase catalytic subunits; additional N- and C-terminal sequences were required for potent inhibition of PP1. Immunoprecipitation of spinophilin or neurabin from crude brain extracts selectively coprecipitated PP1gamma(1) over PP1beta. Moreover, immunoprecipitation of PP1gamma(1) from brain extracts efficiently coprecipitated spinophilin and neurabin, whereas PP1beta immunoprecipitation did not. Thus, PP1(A) holoenzymes containing spinophilin and/or neurabin target specific neuronal PP1 isoforms, facilitating efficient regulation of synaptic phosphoproteins.  相似文献   

16.
The abilities of different GTP-binding proteins to serve as phosphosubstrates for the epidermal growth factor (EGF) receptor/tyrosine kinase have been examined in reconstituted phospholipid vesicle systems. During the course of these studies we discovered that a low molecular mass, high affinity GTP-binding protein from bovine brain (designated as the 22-kDa protein) served as an excellent phosphosubstrate for the tyrosine-agarose-purified human placental EGF receptor. The EGF-stimulated phosphorylation of the purified 22-kDa protein occurs on tyrosine residues, with stoichiometries approaching 2 mol of 32Pi incorporated/mol of [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-binding sites. The EGF-stimulated phosphorylation of the brain 22-kDa protein requires its reconstitution into phospholipid vesicles. No phosphorylation of this GTP-binding protein is detected if it is simply mixed with the purified EGF receptor in detergent solution or if detergent is added back to lipid vesicles containing the EGF receptor and the 22-kDa protein. The EGF-stimulated phosphorylation of this GTP-binding protein is also markedly attenuated by guanine nucleotides, i.e. GTP, GTP gamma S, or GDP, suggesting that maximal phosphorylation occurs when the GTP-binding protein is in a guanine nucleotide-depleted state. Purified preparations of the 22-kDa phosphosubstrate do not cross-react with antibodies against the ras proteins. However, they do cross-react against two different peptide antibodies generated against specific sequences of the human platelet (and placental) GTP-binding protein originally designated Gp (Evans, T., Brown, M. L., Fraser, E. D., and Northrup, J. K. (1986) J. Biol. Chem. 261, 7052-7059) and more recently named G25K (Polakis, P. G., Synderman, R., and Evans, T. (1989) Biochem. Biophys. Res. Commun. 160, 25-32). When highly purified preparations of the human platelet Gp (G25K) protein are reconstituted with the purified EGF receptor into phospholipid vesicles, an EGF-stimulated phosphorylation of the platelet GTP-binding protein occurs with a stoichiometry approaching 2 mol of 32Pi incorporated/mol of [35S]GTP gamma S-binding sites. As is the case for the brain 22-kDa protein, the EGF-stimulated phosphorylation of the platelet GTP-binding protein is attenuated by guanine nucleotides. Overall, these results suggest that the brain 22-kDa phosphosubstrate for the EGF receptor is very similar, if not identical, to the Gp (G25K) protein. Although guanine nucleotide binding to the brain 22-kDa protein or to the platelet. GTP-binding protein inhibits phosphorylation, the phosphorylated GTP-binding proteins appear to bind [35S]GTP gamma S slightly better than their nonphosphorylated counterparts.  相似文献   

17.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

18.
A human retina cDNA library enriched for retina-specific clones was prepared by subtraction with a non-retina population of cDNA in combination with polymerase chain reaction (PCR) amplifications. A highly retina-specific cDNA clone (1190 bp) was obtained through this library encoding a 200 amino acid protein with three calcium binding sites and 87% homology to the bovine photoreceptor protein, recoverin, which has been shown to mediate the recovery of the dark current after photoactivation, and 58% homology to the calcium-binding chick cone protein, visinin. Analysis of the gene indicated a 9-10 kb single-copy gene with at least three exons and two introns. The three exons contained the entire coding sequence, and all of the calcium-binding EF-hand regions were in putative exon 1. The recoverin gene was mapped to human chromosome 17 by hybridization to a panel of human-rodent hybrid DNAs.  相似文献   

19.
We have examined the ability of the beta gamma subunits of guanine nucleotide binding regulatory proteins (G proteins) to support the pertussis toxin (PT) catalyzed ADP-ribosylation of G protein alpha subunits. Substoichiometric amounts of the beta gamma complex purified from either bovine brain G proteins or the bovine retinal G protein, Gt, are sufficient to support the ADP-ribosylation of the alpha subunits of Gi (the G protein that mediates inhibition of adenylyl cyclase) and Go (a G protein of unknown function) by PT. This observation indicates that ADP-ribosylated G protein oligomers can dissociate into their respective alpha and beta gamma subunits in the absence of activating regulatory ligands, i.e., nonhydrolyzable GTP analogues or fluoride. Additionally, the catalytic support of ADP-ribosylation by bovine brain beta gamma does not require Mg2+. Although the beta gamma subunit complexes purified from bovine brain G proteins and the beta gamma complex of Gt support equally the ADP-ribosylation of alpha subunits by PT, there is a marked difference in their abilities to interact with Gs alpha. The enhancement of deactivation of fluoride-activated Gs alpha requires 25-fold more beta gamma from Gt than from brain G proteins to produce a similar response. This difference in potency of beta gamma complexes from the two sources was also observed in the ability of beta gamma to produce an increase in the activity of recombinant Gs alpha produced in Escherichia coli.  相似文献   

20.
Heterotrimeric GTP-binding proteins from bovine brain were resolved by fast protein liquid chromatography chromatography using Mono Q columns. Two distinct forms of the protein Go were identified. Both forms had stochiometric amounts of alpha- and beta gamma-subunits. The a-subunits of both forms were recognized by an alpha o-specific antiserum, but not by any of the alpha i-specific antisera. The two forms showed distinct migration patterns on 9% sodium dodecyl sulfate-polyacrylamide gels containing 4-8 M urea gradients. Neither form comigrated with the recombinant alpha o1. Both the recombinant alpha o1 and the most abundant form of Go were recognized by an antiserum, H-660, against a peptide encoding amino acids 3-17 of alpha i2. H-660 has been shown previously to recognize alpha o and alpha i (Mumby, S. M., Pang, I. K., Gilman, A. G., and Sternweis, P. C. (1988) J. Biol. Chem. 263, 2020-2026). This more abundant form is called Go A most likely corresponds to the cloned alpha o1. The less abundant form, Go B, was not recognized by H-660. However, both forms of bovine brain Go were recognized by GC/2, an antiserum against the N-terminal region of alpha o1. Hence alpha oA and alpha oB may be different in their N terminus regions. Neither form of bovine brain Go was recognized by an antisera made to a peptide encoding the unique regions of the cloned alpha o2 from HIT cells (Hsu W. H., Rudolph, U., Sanford, J., Bertrand, P., Olate, J., Nelson, C., Moss, L.E., Boyd, A. E., III, Codina, J., and Birnbaumer, L. (1990) J. Biol. Chem. 265, 11220-11226). Go A and Go B have similar guanine nucleotide binding and release properties. Both release GDP within 1 min in the absence of added Mg2+. Both bind guanosine (GTP gamma S) rapidly as well. However Go A binds GTP gamma S about 2.5-fold faster than Go B, in the absence of added Mg2+ ion. Both forms of Go as well as the recombinant alpha o (alpha o1) can increase muscarinic stimulation of inositol trisphosphate-mediated Cl- current in Xenopus oocytes. These data indicate that we have identified two structurally distinct forms of Go that have different guanine nucleotide binding properties and are capable of functioning in the receptor-regulated phospholipase C pathway in Xenopus oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号