首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of platinum (II)-terpyridine complexes to DNA was studied by using equilibrium dialysis. Optical absorption methods were used to measure the ability of the ligands to aggregate in aqueous buffer. Scatchard plots for the binding of the monomeric [Pt(terpy)SC4H9]+ cation to DNA at I0.01 are curvilinear, concave upwards, suggesting two modes of binding. The association constant decreases at higher ionic strengths, consistent with polyelectrolyte theory, and 1.1 cations are released per bound ligand molecule. The association constants of the binuclear ligands [Pt(terpy)S[CH2]4S(terpy)Pt]2+ and [Pt(terpy)S[CH2]6S(terpy)Pt]2+ are 8 and 23 times larger respectively than the affinity of the monomer. For the latter binuclear derivative the increase may be ascribed to bifunctional reaction. Differential dialysis experiments with DNAs of differing base composition show that [Pt(terpy)SC4H9]+ has a requirement for a single G X C base-pair at the highest-affinity site. However, in the binuclear ligands chromophore specificity is severely compromised. Similar experiments indicate that 9-aminoacridine and selected methylene-linked diacridines show no significant sequence selectivity.  相似文献   

2.
J K Barton  S J Lippard 《Biochemistry》1979,18(12):2661-2668
The cationic complex (2-hydroxyethanethiolato)(2,2',2'-terpyridine)platinum(II), [(terpy)Pt(HET)]+, binds cooperatively to poly(A).poly(U) by intercalation. The melting temperature of poly(A).poly(U) in low-salt buffer is increased by 6 degrees C in the presence of [(terpy)Pt(HET)]+, indicating stabilization of the duplex structure by the bound platinum reagent. Viscosity measurements provide evidence for comparable lengthening of the polynucleotide in the presence of [(terpy)Pt(HET)]+ and the intercalating dye, ethidium bromide. Scatchard plots of the binding of [(terpy)Pt(HET)]+ to poly(A).poly(U) and poly(I).poly(C), determined through ultracentrifugation pelleting methods, show large positive curvature, reflecting the strong cooperativity associated with the platinum complex-RNA interaction. The characteristics of the binding isotherms are interpreted in terms of a model where cooperative pair units of [(terpy)Pt(HET)]+ intercalate into the double-stranded polymer. At saturation, two platinum molecules are bound for every three base pairs. This stoichiometry may be compared with the nearest-neighbor-exclusion binding observed previously in the interaction of [(terpy)Pt(HET)]+ and the ethidium cation with DNA, in which one intercalator occupies every other interbase-pair site at saturation. The striking differences observed in the interaction of [(terpy)Pt(HET)]+ with DNA and RNA suggest that drug recognition is sensitive to the constraints imposed by nucleic acid secondary structure.  相似文献   

3.
M Howe-Grant  S J Lippard 《Biochemistry》1979,18(26):5762-5769
The DNA binding of three platinum(II) intercalation reagents has been studied and found to depend upon base composition, the nature of the intercalator, and the ionic strength of the solvent medium. In 0.2 M NaCl, binding data for calf thymus DNA show the association constants to be approximately 10(4) M-1. The binding constants decrease in the order [(o-phen)Pt(en)]2+ greater than or equal to [(terpy)Pt(HET)]+ greater than [(bipy)Pt(en)]2+. The number of available intercalation sites for the doubly charged intercalators is only 70% of the number expected from the nearest-neighbor exclusion model. Binding of [(o-phen)Pt(en)]2+ and [(terpy)Pt(HET)]+ to various DNAs depends linearly on G.C content. Both reagents exhibit essentially the same degree of G.C specificity. Intercalative binding is a function of ionic strength. Increasing the salt concentration minimizes the importance of metallointercalator charge, and extrapolation to 1 M salt reveals the intercalative abilities, as reflected in binding constants, to be equivalent for [(terpy)Pt(HET)]+ and [o-phen)Pt(en)]2+ and about 1 order of magnitude less than that of ethidium.  相似文献   

4.
We analysed by analytical ultracentrifugation and fluorescence anisotropy the binding of p53 truncation mutants to sequence-specific DNA. The synthetic 30 base-pair DNA oligomers contained the 20 base-pair recognition elements for p53, consisting of four sites of five base-pairs per p53 monomer. We found that the binding at low ionic strengths was obscured by artifacts of non-specific binding and so made measurements at higher ionic strengths. Analytical ultracentrifugation of the construct p53CT (residues 94-360, containing the DNA-binding core and tetramerization domains) gave a dissociation constant of approximately 3 microM for its dimer-tetramer equilibrium, similar to that of full-length protein. Analytical ultracentrifugation and fluorescence anisotropy showed that p53CT formed a complex with the DNA constructs with 2:1 stoichiometry (dimer:DNA). The binding of p53CT (1-100 nm range) to DNA was highly cooperative, with a Hill coefficient of 1.8 (dimer:DNA). The dimeric L344A mutant of p53CT has impaired tetramerization. It bound to full-length DNA p53 recognition sequence, but with sixfold less affinity than wild-type protein. It did not form a detectable complex with a 30-mer DNA construct containing two specific five base-pair sites and two random sites, emphasizing the high co-operativity of the binding. The fundamental active unit of p53 appears to be the tetramer, which is induced by DNA binding, although it is a dimer at low concentrations.  相似文献   

5.
A statistical mechanical calculation of the binding properties of DNA bis-intercalators is presented, based on the sequence-generating function method of Lifson. The effects of binding by intercalation of one or both chromophores of a bifunctional intercalating agent are examined. The secular equation for a general model that includes the effects of neighbor (nearest and non-nearest) exclusion and/or cooperativity in the binding of both singly and doubly intercalated ligands is derived. Numerical results for binding curves are presented for a more restricted model in which each type of bound ligand rigorously excludes its nearest neighbor and the total number of sites covered by a doubly intercalated ligand is variable. At low values of free ligand concentration bis-intercalation dominates the binding process, while at high value of free ligand concentration, intercalation of only one chromophore per ligand becomes significant due to the unavailability of contiguous free sites required for bis-intercalation. Also, depending on the binding parameters, the free energy of the system can be lowered by a loss of doubly intercalated ligands in favor of singly intercalated ones. Corresponding to this transition in binding mode, the average number of sites occupied by a bound ligand decreases from that characteristic of bis-intercalation to that characteristic of mono-intercalation as free ligand concentration increases. An analysis of Scatchard plots describing bis-intercalation is presented.  相似文献   

6.
The products of the reaction between [Pt(dien)Cl]Cl and salmon sperm DNA have been purified and their structures determined. [Pt(dien)Cl]Cl binds at the N7 position of guanine for levels of fixation below 0.1 platinum per DNA base. Above this level of binding, [Pt(dien)Cl]Cl also reacts at the N7 position of adenine. 1,7-[Pt(dien)]2Ade was observed when more than 0.3 platinum per base were bound to the DNA. Platination at the N7 position of guanosine, unlike alkylation, stabilized the glycosyl linkage and did not lead to fission of the imidazole ring at high pH.  相似文献   

7.
The amount of cis-dichlorodiamine platinum (II) bound to DNAs of varying (dA + dT) content was assayed by both ultraviolet absorbance spectrophotometry and the use of the radioisotope 1 9 5 Pt. Radioisotope labeling indicates twice as much bound platinum as do optical measurements. The molar ratio of bound platinum r at saturation is approximately half the sum of the nearest-neighbor frequencies of all base-pairs that do not contain thymine. We therefore conclude that platinum does not bind to thymine in DNA. Chromatographic studies with (14C) purine-labeled DNA indicate preferential binding of platinum to guanine, followed by binding to adenine. The luminescence properties of DNA and of homopolynucleotides are strongly affected by bound platinum as a result of a heavy-atom effect. A plot of the fluorescence-to-phosphorescence ratio as a function of r gives a saturation binding curve similar to that obtained using 1 9 5 Pt. Ultraviolet irradiation of DNA treated with the platinum compound results in a 30% increase in the rate of formation of thymine homocyclobutadipyrimidine. When acetophenone sensitization is employed, platinum binding enhances cytosine homocyclobutadipyrimidine formation 10-fold presumably because the triplet level of cytosine complexed with platinum is lowered below that of acetophenone. The viscosity of DNA decreases sharply upon binding platinum, with half the change occuring when less that 6% of the bases are complexed. From the rate of reaction with formaldehyde, we conclude that binding of the platinum compound to DNA induces small denatured regions that unwind in the presence of formaldehyde with a rate about 40 times slower than that of a single-strand chain break.  相似文献   

8.
The interaction of the anti-tumour active cis platinum (II) complexes with DNA has been investigated using dichloro(ethylenediamine)platinum(II) and E. coli DNA. Equilibrium dialysis studies indicate that Pt(en)Cl2 binds reversibly to DNA to a saturation value of 0.57 Pt: P, which is consistent with the platinum being bound both monofunctionally and bifunctionally. Pt(en)Cl2 inhibits the intercalation of 9-aminoacridine (9AA) by cross-linking the bases of the double helix, but at no stage does all the bound platinum cross-link. It is suggested that this inhibition of intercalation is due to intrastrand cross-linking.  相似文献   

9.
The interaction of substituted and rigidly linked diquinolines with DNA   总被引:1,自引:0,他引:1  
Viscometric measurements with circular and sonicated rodlike DNA fragments were used to explore whether ring substituents or conformationally restricted linkers promote bifunctional intercalation amongst a series of binuclear 4-aminoquinolines bridged via their 4-amino group. We find that ligands comprising unsubstituted quinolines and piperazine or pyrazole linkages bisintercalate. Quinoline-substituted alkyl-linked dimers intercalate in either a mixed monofunctional-bifunctional mode or bind with only one of their chromophores intercalated depending on the nature of the substituents. Equilibrium dialysis measurements show that the binding affinity for calf thymus DNA of the compounds studied ranges from (1.2-12) . 10(4) M-1 in buffer of ionic strength 0.1. Both co-operative and antico-operative binding isotherms were obtained and there is evidence for a second binding mode for the piperazine-linked diquinoline at saturating binding levels. For this compound the high-affinity association constant decreases with increasing ionic strength, 3.4 cations being released per bound ligand molecule. Partition dialysis measurements with DNAs of differing base composition indicate that the compounds studied are either AT selective or sequence neutral depending on ligand structure. For example, the pyrazole linker imparts a marked specificity for binding to AT-rich DNA, whereas the piperazine linker does not. Kinetic measurements using the surfactant-sequestration method reveal that DNA-diquinoline complexes dissociate very rapidly by complex mechanisms with rate constants greater than 100 s-1 in buffer of ionic strength 0.1.  相似文献   

10.
The interaction between TANDEM (a des-methyl analogue of triostin A) and poly(dA-dT) results in extension of the helix by 6.8 Å for each ligand molecule bound, exactly as predicted for a bis-intercalation reaction. Cooperativity is evident in Scatchard plots for the interaction at ionic strengths of 0.2 and 1.0, where the binding constant is diminished compared to that which pertains at low salt concentration. Binding to a natural DNA (calf thymus), already considerably weaker than binding to poly(dA-dT), is also sensitive to increased ionic strength. With a self-complementary octanucleotide d(G-G-T-A-T-A-C-C) the binding curve indicates the presence of a single des-N-tetramethyltriostin A binding site per helical fragment with a non-cooperative association constant about 6·106 M?1. Detergent-induced dissociation of des-N-tetramethyltriostin A-poly(dA-dT) complexes results in a simple exponential decay at all levels of binding, but the time constant of decay is dependent upon the initial binding ratio. This behaviour cannot directly explain the cooperativity of equilibrium binding isotherms but suggests the occurrence of relatively long-lived perturbations of the helical structure by binding of the ligand. [Ala3, Ala7]des-N-tetramethyltriostin A, which has a more flexible octapeptide ring lacking the disulphide cross-bridge, dissociates from poly(dA-dT) much faster than des-N-tetramethyltriostin A. Dissociation of des-N-tetramethyltriostin A from calf thymus DNA is more rapid than dissociation of triostin A or other quinoxaline antibiotics, which may account for its low antimicrobial activity.  相似文献   

11.
12.
The binding of mitoxantrone with double-helical nucleic acids was investigated by the methods of isothermal microcalorimetry, circular dichroism and absorption at the ionic strength mu = 0.11 and 0.011 M NaCl at temperature region of 30 divided by 60 degrees C. The investigation shows, that at mu = 0.11 M NaCl mitoxantrone interacts with double-helical nucleic acids in one way only. For such conditions using spectrophotometric titration data Scatchard plots for the binding of mitoxantrone with double-helical nucleic acids were constructed. The calculations show that the saturation stoichiometry is one mitoxantrone molecule per 2 divided by 3 base pairs DNA and 6 divided by 8 base pairs RNA. The dependence of binding constant from GC-content is observed. It is shown that the binding enthalpy of mitoxantrone with DNA and RNA increases linearly and reaches -(3.0 +/- 0.5) kkal per 1 mol mitoxantrone. It is shown that a binding mitoxantrone with double-helical nucleic acids, besides the intercalation of rings, a determinate contribution in the binding is given also by electrostatic interaction of side chains mitoxantrone with nucleic acids.  相似文献   

13.
Antibodies reactive to (1R,2R)-cyclohexanediamineplatinum(II)-DNA ((1R,2R)-cyclohexanediamine: 1R,2R-dach) adducts were elicited by immunization of rabbit with calf thymus DNA modified by Pt(1R,2R-dach)Cl2 at a ratio of bound platinum per nucleotide ((D/N)b) of 0.0335. In an enzyme-linked immunosorbent assay (ELISA), the binding of specific antibodies to Pt(1R,2R-dach)-DNA adduct (60 microliters of 1.235 x 10(-7) M Pt in each wells) on the assay plate was competitively inhibited by Pt(1R,2R-dach)-DNA adduct ((D/N)b = 0.0653) in the solution. Almost equal inhibition was observed with Pt(1S,2S-dach)-DNA ((D/N)b = 0.0412), an optical isomer of 1R,2R-dach. Pt(1R,2S-dach)-DNA ((D/N)b = 0.0371) and Pt(1R,3S-dach)-DNA ((D/N)b = 0.0281) in which the cyclohexane ring is stereochemically perpendicular to the platinum chelate plane, also inhibited antibody binding, but these adducts gave only incomplete inhibition at higher Pt-DNA adduct concentrations. Although Pt(1R,2R-dach)-d(GpG) and Pt(1R,2R-dach)(NH3)2 inhibited antibody binding, the affinity of the antibody for Pt(1R,2R-dach)(NH3)2 was lower than with Pt(1R,2R-dach)-DNA, and the inhibition behavior of Pt(1R,2R-dach)-d(GpG) was biphasic, i.e., at the lower concentration the inhibition curve was consistent with that of Pt(1R,2R-dach)-DNA, but at the higher concentration it shifted to that of Pt(1R,2R-dach)(NH3)2. The affinity of the antibody for cis-DDP was markedly lower than with Pt(1R,2R-dach)(NH3)2. These facts suggest that the antibodies may bind to the substituents (the platinum and its surroundings) of the various Pt complexes rather than the DNA structure altered by platinum binding.  相似文献   

14.
Quantitative estimation of the binding of Pt (II) with DNA and its derivatives is carried out and the selectivity of this reaction is studied. Absorption spectra and binding curves of Pt (II) with GC- and AT-enriched DNA fractions, apurinic and apyrimidinic acids, poly A and deoxyribonucleotides are studied. The strongest Pt (II) binding was observed in cytosine-containing nucleic acid components. The reduction of Pt (II) to Pt (O) took place only in the presence of cytosine. Adenine component was found to form 1 : 1 complex with chloroplatinit. A model of Pt (II) : DNA complex is proposed, in which a metal ion is bound with cytosine cycle through N3 atom. A complex is formed due to a high electron-acceptor capacity of cytosine cycle, the charge being transferred between platinum and DNA base. Thus, complex-bound platinum is capable of oxidating platinum ions in the solution.  相似文献   

15.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

16.
The stability of complexes of NaDNA with bipyridyl- (ethylenediamine)platinum(II) (abbreviated [(bipy)Pt(en)](2+)) and with netropsin has been studied using two techniques: (i) ultraviolet (UV) melting experiments were done on NaDNA* [(bipy)Pt(en)](2+), showing that the [(bipy)Pt(en)](2+) ligand stabilizes the DNA double helix structure; and (ii) swelling measurements (via optical microscopy) as a function of relative humidity were done on wet-spun oriented films of NaDNA*[(bipy)Pt(en)](2+) and of NaDNA*netropsin. The swelling data shows that an irreversible transition of the films occurs at high relative humidity, first for the NaDNA*netropsin, then for pure NaDNA, and lastly for the NaDNA*[(bipy)Pt(en)](2+). These results are indicative that the [(bipy)Pt(en)](2+) complex stabilizes the intermolecular bonds which mediate the film swelling characteristics. A model is suggested for the binding of [(bipy)Pt(en)](2+) to DNA to explain why the swelling experiments show this ligand as increasing the intermolecular bond strength between the DNA double helices, while netropsin decreases this degree of stabilization.  相似文献   

17.
The non-covalent binding of [(en)Pt(mu-dpzm)2Pt(en)]4+ to the dodecanucleotides d(CGCGAATTCGCG)2 and d(CAATCCGGATTG)2 has been studied by 1H NMR spectroscopy in order to gain a greater understanding of the pre-covalent binding association of cationic dinuclear platinum(II) anti-cancer drugs. NOESY experiments showed that the metal complex bound in the minor groove at the A/T rich regions of both dodecanucleotides. The metal complex did not induce any major DNA conformational changes. However, given the relative dimensions of the DNA minor groove and the metal complex, it is reasonable to expect that the metal complex binding significantly widens the minor groove at the A/T rich binding sites. The results of this study suggest that although dinuclear platinum(II) anti-cancer drugs covalently bind at GC sequences in the DNA major groove, they will preferentially associate with AT sequences in the minor groove before the covalent binding.  相似文献   

18.
The complex between lac repressor headpiece and short rodlike DNA fragments containing the lac operator sequence is characterised by measurements of the rotation diffusion. Using the method of electric dichroism we measure the rotation relaxation and determine changes in the length of the DNA upon ligand binding with high accuracy. According to these measurements any change in the length of the operator DNA upon binding of the first two headpiece molecules remains below 1A; the electric dichroism also remains virtually unchanged. At high degrees of (unspecific) binding we observe an increase in the rotation relaxation time, which is attributed to an increase of the apparent mean radius of the complex. As a control of our procedure for the determination of length changes we use the intercalation of ethidium bromide and arrive at an increase of the DNA length per bound ethidium of 3.2A (at 3.4A rise per base pair). The results obtained for the headpiece operator complex are not consistent with models assuming large changes of the DNA structure or intercalation of tyrosine residues.  相似文献   

19.
A simple and rapid method has been used to compare the binding of platinum complexes to DNA, in a relatively qualitative manner. A compound bound at or near the restriction site inhibits enzymatic cleavage of DNA; inhibition of BamHI and EcoRI activity by complexes was assessed in this study using linearized pSV2-gpt plasmid. Our particular interest was in DNA binding by complexes of platinum (Pt) with known organic radiosensitizers (RS), to determine whether the Pt was able to target the RS to the DNA. Although the Pt-RS complexes investigated themselves have moderate radiosensitizing ability (like the inorganic complexes, cis- or trans-diamminedichloroplatinum(II), c- or t-DDP) none of the Pt-RS inhibit to the same extent as c- or t-DDP. However, there appears to be some correlation between enhanced radiosensitization by Pt-RS over Pt(RS)2, with the degree of Pt binding (as assessed by our assay). Our results using isolated DNA suggest that not all complexes bind well (e.g. Pt with two RS ligands), but that in certain cases (e.g. Pt with only one RS), it is possible to target the drug to the DNA. An ammine or amine ligand may be required in order to target a radiosensitizer to DNA using platinum.  相似文献   

20.
The interaction of quinacrine with calf thymus DNA was monitored at several different ionic strengths using spectrophotometric and equilibrium dialysis techniques. The binding results can be explained, assuming each base pair is a potential binding site, using a model containing two negative cooperative effects: (1) ligand exclusion at binding sites adjacent to a filled binding site and (2) ligand–ligand negative cooperativity at adjacent filled binding sites. The logarithm of the observed equilibrium constant (Kobs) determined by this model varies linearily with log[Na+], as predicted by the ion condensation theory for polyelectrolytes. When the log Kobs plot is correlated for sodium release by DNA in the intercalation conformational change, the predicted number of ion pairs between the ligand and DNA is approximately two, as expected for the quinacrine dication. Even though Kobs depends strongly on ionic strength, the ligand negative cooperativity parameter ω was found to be indpendent of ionic strength within experimental error. This finding is also in agreement with the ion condensation theory, which predicts a relatively constant amount of condensed counterion on the DNA double helix over this ionic strength range. Drugs would, therefore, experience a relatively constant ionic environment when complexed to DNA even though the ionic conditions of the solvent could change considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号