首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Current biology : CB》1999,9(18):999-S1
Background: Newly synthesised peptide-receptive major histocompatibility complex (MHC) class I molecules form a transient loading complex in the endoplasmic reticulum with the transporter associated with antigen processing (TAP) and a set of accessory proteins. Binding of peptide to the MHC class I molecule is necessary for dissociation of the MHC class I molecule from the complex with TAP, but other components of the complex might also be involved. To investigate the role of TAP in this process, mutations that block nucleotide binding were introduced into the ATP-binding site of TAP.Results: Mutant TAP formed apparently normal loading complexes with MHC class I molecules and accessory components, but had no nucleotide-binding or peptide-transport activity. Nevertheless, whereas wild-type loading complexes in detergent lysates could be dissociated by addition of peptides that bind MHC class I molecules, mutant complexes could not be dissociated in this way. Depletion of nucleotide diphosphates or triphosphates from wild-type lysates blocked peptide-mediated dissociation of MHC class I molecules, which could be reversed by readdition of nucleotide diphosphates or triphosphates. Complexes between mutant TAP and MHC class I molecules remained associated in vivo until they were degraded. Disruption of nucleotide binding also eliminated TAP's peptide-binding activity.Conclusions: Peptide-mediated dissociation of the MHC class I molecule from the loading complex depends on conformational signals arising from TAP. Integrity of the nucleotide-binding site is required not only for transmission of this conformational signal to the loading complex, but also for binding of peptide to TAP. Thus, the dynamic activity of the loading complex is synchronised with the nucleotide-mediated peptide-binding and transport cycle of TAP.  相似文献   

2.
In this study, we examine the role of the putative cargo receptor B cell-associated protein (Bap)29/31 in the export of MHC class I molecules out of the endoplasmic reticulum (ER). We show that Bap31 binds to two allotypes of mouse class I molecules, with the interaction initiated at the time of H chain association with beta(2)-microglobulin and maintained until the class I molecule has left the ER. We also show that Bap31 is part of the peptide-loading complex, although is not required for its formation. Bap31 binds not only to class I molecules, but can bind to tapasin in the absence of class I. Consistent with an important role in recruiting class I molecules to transport vesicles, we show that in the absence of Bap29/31, there is a loss of class I colocalization with mSec31 (p137), a component of mammalian coat protein complex II coats. This observation is also associated with a delay in class I traffic from ER to Golgi. Our results are consistent with the view that class I molecules are largely recruited to ER exit sites by Bap29/31, and that Bap29/31 is a cargo receptor for MHC class I molecules.  相似文献   

3.
4.
Phagosomes contain class II MHC (MHC-II) and form peptide:MHC-II complexes, but the source of phagosomal MHC-II molecules is uncertain. Phagosomes may acquire nascent MHC-II or preexisting, recycling MHC-II that may be internalized from the plasma membrane. Brefeldin A (BFA) was used to deplete nascent MHC-II in murine macrophages to determine the relative contributions of nascent and recycling MHC-II molecules to phagocytic Ag processing. In addition, biotinylation of cell-surface proteins was used to assess the transport of MHC-II from the cell surface to phagosomes. BFA inhibited macrophage processing of latex bead-conjugated Ag for presentation to T cells, suggesting that nascent MHC-II molecules are important in phagocytic Ag processing. Furthermore, detection of specific peptide:MHC-II complexes in isolated phagosomes confirmed that BFA decreased formation of peptide:MHC-II complexes within phagosomes. Both flow organellometry and Western blot analysis of purified phagosomes showed that about two-thirds of phagosomal MHC-II was nascent (depleted by 3 h prior treatment with BFA) and primarily derived from intracellular sites. About one-third of phagosomal MHC-II was preexisting and primarily derived from the plasma membrane. BFA had little effect on phagosomal H2-DM or the degradation of bead-associated Ag. Thus, inhibition of phagocytic Ag processing by BFA correlated with depletion of nascent MHC-II in phagosomes and occurred despite the persistent delivery of plasma membrane-derived recycling MHC-II molecules and other Ag-processing components to phagosomes. These observations suggest that phagosomal Ag processing depends primarily on nascent MHC-II molecules delivered from intracellular sites, e.g., endocytic compartments.  相似文献   

5.
The presentation of peptides by class I histocompatibility molecules plays a central role in the cellular immune response to virally infected or transformed cells. The main steps in this process include the degradation of both self and 'foreign' proteins to short peptides in the cytosol, translocation of peptides into the lumen of the endoplasmic reticulum, binding of a subset of peptides to assembling class I molecules and expression of class-I-peptide complexes at the cell surface for examination by cytotoxic T cells. A molecular understanding of most of these steps is emerging, revealing a remarkable coordination between the processes of peptide translocation, delivery and binding to class I molecules.  相似文献   

6.
The total number of cell surface glycoprotein molecules at the plasma membrane results from a balance between their constitutive internalization and their egress to the cell surface from intracellular pools and/or biosynthetic pathway. Constitutive internalization is net result of constitutive endocytosis and endocytic recycling. In this study we have compared spontaneous internalization of murine major histocompatibility complex (MHC) class I molecules (K(d), D(d), full L(d), and empty L(d)) after depletion of their egress to the cell surface (Cycloheximide [CHX], brefeldin A [BFA]) and internalization after external binding of monoclonal antibody (mAb). MHC class I alleles differ regarding their cell surface stability, kinetics, and in the way of internalization and degradation. K(d) and D(d) molecules are more stable at the cell surface than L(d) molecules and, thus, constitutively internalized more slowly. Although the binding of mAbs to cell surface MHC class I molecules results in faster internalization than depletion of their egress, it is still slow and, thereby, can serve as a model for tracking of MHC class I endocytosis. Internalization of fully conformed MHC class I molecules (K(d), D(d), and L(d)) was neither inhibited by chlorpromazine (CP) (inhibitor of clathrin endocytosis), nor with filipin (inhibitor of lipid raft dependent endocytosis), indicating that fully conformed MHC class I molecules are internalized via the bulk pathway. In contrast, internalization of empty L(d) molecules was inhibited by filipin, indicating that non-conformed MHC class I molecules require intact cholesterol-rich membrane microdomains for their constitutive internalization. Thus, conformed and non-conformed MHC class I molecules use different endocytic pathways for constitutive internalization.  相似文献   

7.
The notion that peptides bound to MHC class I molecules are derived mainly from newly synthesized proteins that are defective, and are therefore targeted for immediate degradation, has gained wide acceptance. This model, still entirely hypothetical, has strong intuitive appeal and is consistent with some experimental results, but it is strained by other findings, as well as by established and emerging concepts in protein quality control. While not discounting defectiveness as a driving force for the processing of some proteins, we propose that MHC-class-I-restricted epitopes are derived mainly from nascent proteins that are accessed by the degradation machinery prior to any assessment of fitness, and we outline one way in which this could be accomplished.  相似文献   

8.
CTL recognize short peptide fragments presented by class I MHC molecules. In this study, we examined the effect of phosphorylation on TAP transport, binding to class I MHC molecules, and recognition by CTL of peptide fragments from known phosphorylated oncogene proteins or virus phosphoproteins. We show that phosphopeptides can be efficiently transported from the cytosol to the endoplasmic reticulum by the TAP. Furthermore, we show that phosphorylation can have a neutral, negative, or even a positive effect on peptide binding to class I MHC. Finally, we have generated phosphopeptide-specific CTL that discriminate between the phosphorylated and the nonphosphorylated versions of the peptide. We conclude that phosphopeptide-specific CTL responses are likely to constitute a subset of the class I MHC-restricted CTL repertoire in vivo.  相似文献   

9.
The basis for the immune response against intracellular pathogens is the recognition by cytotoxic T lymphocytes of antigenic peptides derived from cytosolic proteins, which are presented on the cell surface by major histocompatibility complex (MHC) class I molecules. The understanding of MHC class I-restricted peptide presentation has recently improved dramatically with the elucidation of the structural basis for the specificity of peptide binding to MHC class I molecules and the identification of proteins encoded in the class II region of the MHC that are putatively involved in the production of peptides and their transport into the endoplasmic reticulum, where they assemble with class I molecules.  相似文献   

10.
Assembly of MHC class I molecules analyzed in vitro   总被引:35,自引:0,他引:35  
A Townsend  T Elliott  V Cerundolo  L Foster  B Barber  A Tse 《Cell》1990,62(2):285-295
Recent evidence suggests that peptide ligands take part in the assembly of class I molecules in living cells. We now describe a simple system for studying class I assembly in vitro. Detergent extracts of the mutant cells RMA-S and .174, in which class I assembly does not occur spontaneously, will support assembly in vitro when specific peptides are added. Peptides stabilize a conformational change in the class I heavy chain and association with beta 2-microglobulin, at concentrations approximately 100-fold lower than required in "peptide feeding" experiments with whole cells. We show that peptides bind class I molecules during assembly and demonstrate that the conformational change induced in the heavy chain is influenced by the concentrations of both peptide and beta 2-microglobulin.  相似文献   

11.
We are able to make reliable predictions of the efficiency with which peptides of arbitrary lengths will be transported by TAP. The pressure exerted by TAP on Ag presentation thus can be assessed by checking to what extent MHC class I (MHC-I)-presented epitopes can be discriminated from random peptides on the basis of predicted TAP transport efficiencies alone. Best discriminations were obtained when N-terminally prolonged epitope precursor peptides were included and the contribution of the N-terminal residues to the score were down-weighted in comparison with the contribution of the C terminus. We provide evidence that two factors may account for this N-terminal down-weighting: 1) the uncertainty as to which precursors are used in vivo and 2) the coevolution in the C-terminal sequence specificities of TAP and other agents in the pathway, which may vary among the various MHC-I alleles. Combining predictions of MHC-I binding affinities with predictions of TAP transport efficiency led to an improved identification of epitopes, which was not the case when predictions of MHC-I binding affinities were combined with predictions of C-terminal cleavages made by the proteasome.  相似文献   

12.
Human cytomegalovirus (HCMV) interferes with major histocompatibility complex (MHC) class I antigen presentation by a sequential multistep process to escape T cell surveillance. During the immediate early phase of infection, the glycoprotein US3 prevents intracellular transport of MHC class I molecules. Interestingly, US3 displays a significantly shorter half-life than US3-retained MHC class I molecules. Here we show that US3 associates only transiently with MHC class I molecules, exits the ER, and is inefficiently retrieved from the Golgi. US3 was degraded in a post-Golgi compartment, most likely lysosomes, because: i) Brefeldin A treatment prolonged the half-life of US3; and ii) US3 co-localized with the lysosomal marker protein LAMP in chloroquine-treated cells. In contrast, MHC class I molecules remained stable in the ER. Upon inhibition of protein synthesis MHC class I molecules were released suggesting that a continuous supply of newly synthesized US3 molecules is required for inhibition of transport. Thus, US3 does not seem to retain MHC class I molecules by a retrieval mechanism. Instead, our observations are consistent with US3 preventing MHC class I trafficking by blocking forward transport.  相似文献   

13.
 Major histocompatibility complex (MHC) class I molecules are heterodimers of a class I heavy chain and β2-microglobulin that bind peptides supplied by the MHC region-encoded transporters associated with antigen processing (TAP). Peptide binding by class I heterodimers is necessary for their maturation into stable complexes and is dependent on their physical association with TAP. In human mutant 721.220 cells, however, a novel genetic defect causes the failure of class I heterodimers to associate with TAP. This deficiency correlates with lack of expression of a glycoprotein, tapasin (TAP-associated glycoprotein), which has been found in association with class I heterodimers and TAP. Employing a transcomplementation analysis, we obtained evidence co-localizing the genetic defect of mutant 220 cells and the structural or a regulatory gene controlling the expression of tapasin on the short arm of chromosome 6, which includes the MHC. Expression of tapasin and the normal interaction of class I heterodimers with TAP are concomitantly restored, indicating the probable function of tapasin as a physical link between these complexes. In further support of this model, the absence of tapasin in mutant 220 cells correlates with reduced class I heterodimer stability, suggesting that tapasin may stabilize class I heterodimers and thereby enhance their association with TAP. These results further implicate tapasin in a mechanism that promotes peptide binding by class I heterodimers through their interaction with TAP. Received: 20 March 1997 / Revised: 2 June 1997  相似文献   

14.
Class I molecules of the major histocompatibility complex play a vital role in cellular immunity, reporting on the presence of viral or tumor-associated antigens by binding peptide fragments of these proteins and presenting them to cytotoxic T cells at the cell surface. The folding and assembly of class I molecules is assisted by molecular chaperones and folding catalysts that comprise the general ER quality control system which also monitors the integrity of the process, disposing of misfolded class I molecules through ER associated degradation (ERAD). Interwoven with general ER quality control are class I-specific components such as the peptide transporter TAP and the tapasin-ERp57 chaperone complex that supply peptides and monitor their loading onto class I molecules. This ensures that at the cell surface class I molecules will possess mainly optimal peptides with a long half-life. In this review we discuss these processes as well as a number of strategies that viruses have evolved to subvert normal class I assembly within the ER and thereby evade immune recognition by cytotoxic T cells.  相似文献   

15.
Antigen loading of MHC class I molecules in the endocytic tract   总被引:3,自引:1,他引:3  
Major histocompatibility complex (MHC) class I molecules bind antigenic peptides that are translocated from the cytosol into the endoplasmic reticulum by the transporter associated with antigen processing. MHC class I loading independent of this transporter also exists and involves peptides derived from exogenously acquired antigens. Thus far, a detailed characterization of the intracellular compartments involved in this pathway is lacking. In the present study, we have used the model system in which peptides derived from measles virus protein F are presented to cytotoxic T cells by B-lymphoblastoid cells that lack the peptide transporter. Inhibition of T cell activation by the lysosomotropic drug ammoniumchloride indicated that endocytic compartments were involved in the class I presentation of this antigen. Using immunoelectron microscopy, we demonstrate that class I molecules and virus protein F co-localized in multivesicular endosomes and lysosomes. Surprisingly, these compartments expressed high levels of class II molecules, and further characterization identified them as MHC class II compartments. In addition, we show that class I molecules co-localized with class II molecules on purified exosomes, the internal vesicles of multivesicular endosomes that are secreted upon fusion of these endosomes with the plasma membrane. Finally, dendritic cells, crucial for the induction of primary immune responses, also displayed class I in endosomes and on exosomes.  相似文献   

16.
The physical association of HLA class I and class II Ag in the membranes of PGF and JY lymphoblastoid cell lines was studied using flow cytometric energy transfer. This technique measures the proximity of cell surface molecules in the nm range and provides a distribution histogram of the average proximity of molecules on each cell of a population. HLA Ag were labeled with mAb conjugated to fluorescein, serving as donor, or tetramethylrhodamine, serving as acceptor molecules. Significant fluorescence energy transfer was detected between various combinations of class I and class II molecules indicating that these molecules are within 10 nanometers of each other. Specifically, energy transfer was observed between class I molecules and DR, DQ, or DP class II HLA molecules. In addition, energy transfer between all combinations of DR, DQ, and DP molecules was observed. No transfer was observed among class I molecules or among DR or among DP molecules. Among DQ molecules, subpopulations transferred fluorescence energy to each other. The close contact measured between class I and class II Ag correlates with previous reports of cocapping and may reflect an immunologically significant interaction or the reported tendency of class I Ag to associate with other cell surface receptors, including growth factor receptors. The energy transfer between fluorescent antibodies to class II Ag suggests the existence of heterodimers formed from the different locus products, as well as possible quaternary surface interactions between alpha/beta complexes from separate loci.  相似文献   

17.
Peptide binding to class I major histocompatibility complex (MHCI) molecules is a key step in the immune response and the structural details of this interaction are of importance in the design of peptide vaccines. Algorithms based on primary sequence have had success in predicting potential antigenic peptides for MHCI, but such algorithms have limited accuracy and provide no structural information. Here, we present an algorithm, PePSSI (peptide-MHC prediction of structure through solvated interfaces), for the prediction of peptide structure when bound to the MHCI molecule, HLA-A2. The algorithm combines sampling of peptide backbone conformations and flexible movement of MHC side chains and is unique among other prediction algorithms in its incorporation of explicit water molecules at the peptide-MHC interface. In an initial test of the algorithm, PePSSI was used to predict the conformation of eight peptides bound to HLA-A2, for which X-ray data are available. Comparison of the predicted and X-ray conformations of these peptides gave RMSD values between 1.301 and 2.475 A. Binding conformations of 266 peptides with known binding affinities for HLA-A2 were then predicted using PePSSI. Structural analyses of these peptide-HLA-A2 conformations showed that peptide binding affinity is positively correlated with the number of peptide-MHC contacts and negatively correlated with the number of interfacial water molecules. These results are consistent with the relatively hydrophobic binding nature of the HLA-A2 peptide binding interface. In summary, PePSSI is capable of rapid and accurate prediction of peptide-MHC binding conformations, which may in turn allow estimation of MHCI-peptide binding affinity.  相似文献   

18.

Background

Class II Major Histocompatibility Complex (MHC) molecules have an open-ended binding groove which can accommodate peptides of varying lengths. Several studies have demonstrated that peptide flanking residues (PFRs) which lie outside the core binding groove can influence peptide binding and T cell recognition. By using data from the AntiJen database we were able to characterise systematically the influence of PFRs on peptide affinity for MHC class II molecules.

Results

By analysing 1279 peptide elongation events covering 19 distinct HLA alleles it was observed that, in general, peptide elongation resulted in increased MHC class II molecule affinity. It was also possible to determine an optimal peptide length for MHC class II affinity of approximately 18–20 amino acids; elongation of peptides beyond this length resulted in a null or negative effect on affinity.

Conclusion

The observed relationship between peptide length and MHC class II affinity has significant implications for the design of vaccines and the study of the epitopic basis of immunological disease.  相似文献   

19.
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding α1 and α2 domains, suggesting failure of peptide binding is responsible for retaining ‘intracellular’ Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.  相似文献   

20.
In this review we discuss the influence of chaperones on the general phenomena of folding as well as on the specific folding of an individual protein, MHC class I. MHC class I maturation is a highly sophisticated process in which the folding machinery of the endoplasmic reticulum (ER) is heavily involved. Understanding the MHC class I maturation per se is important since peptides loaded onto MHC class I molecules are the base for antigen presentation generating immune responses against virus, intracellular bacteria as well as tumours. This review discusses the early stages of MHC class I maturation regarding BiP and calnexin association, and differences in MHC class I heavy chain (HC) interaction with calnexin and calreticulin are highlighted. Late stage MHC class I maturation with focus on the dedicated chaperone tapasin is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号